scholarly journals On a Subclass of Analytic and Univalent Functions with Positive Coefficients Defined by a Differential Operator

2021 ◽  
pp. 2000-2008
Author(s):  
Aqeel Ketab Al-khafaji

In this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:     which is defined in the open unit disk  satisfying the following condition This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.

2017 ◽  
Vol 84 (1-2) ◽  
pp. 73
Author(s):  
Amol B. Patil ◽  
Uday H. Naik

In the present investigation we introduce two subclasses Ν<sub>Σ</sub><sup>δ</sup>,<sup>μ</sup> [η, α, λ] and Ν<sub>Σ</sub><sup>δ</sup>,<sup>μ</sup> (η, β, λ) of the function class Σ of bi-univalent functions defined in the open unit disk. These subclasses are defined by using the Al-Oboudi differential operator, which is the generalized Salagean's differential operator. Also we find estimates on initial coeffcients |a<sub>2</sub>| and |a<sub>3</sub>| for the functions in these subclasses and consider some related subclasses in connection with these subclasses.


Author(s):  
Young Jae Sim ◽  
Oh Sang Kwon

LetDdenote the open unit disk and letSdenote the class of normalized univalent functions which are analytic inD. LetCo(α)be the class of concave functionsf∈S, which have the condition that the opening angle off(D)at infinity is less than or equal toπα,α∈(1,2]. In this paper, we find a sufficient condition for the Gaussian hypergeometric functions to be in the classCo(α). And we define a classCo(α,A,B),(-1≤B<A≤1), which is a subclass ofCo(α)and we find the set of variabilities for the functional(1-|z|2)(f″(z)/f′(z))forf∈Co(α,A,B). This gives sharp upper and lower estimates for the pre-Schwarzian norm of functions inCo(α,A,B). We also give a characterization for functions inCo(α,A,B)in terms of Hadamard product.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Serap Bulut

We introduce and investigate a new general subclass ℋΣλ,μ(φ;Θ) of analytic and bi-univalent functions in the open unit disk U. For functions belonging to this class, we obtain estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3|.


2021 ◽  
Vol 66 (4) ◽  
pp. 659-666
Author(s):  
Abbas Kareem Wanas ◽  
◽  
Agnes Orsolya Pall-Szabo ◽  

In the present paper, we introduce and study two new subclasses of analytic and $m$-fold symmetric bi-univalent functions defined in the open unit disk $U$. Furthermore, for functions in each of the subclasses introduced here, we obtain upper bounds for the initial coefficients $\left| a_{m+1}\right|$ and $\left| a_{2m+1}\right|$. Also, we indicate certain special cases for our results.


2021 ◽  
Vol 7 (2) ◽  
pp. 2512-2528
Author(s):  
Zeya Jia ◽  
◽  
Nazar Khan ◽  
Shahid Khan ◽  
Bilal Khan ◽  
...  

<abstract><p>In this paper, we introduce the $ q $-analogus of generalized differential operator involving $ q $-Mittag-Leffler function in open unit disk</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} E = \left \{ z:z\in \mathbb{C\ \ }\text{ and} \ \ \left \vert z\right \vert &lt;1\right \} \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>and define new subclass of analytic and bi-univalent functions. By applying the Faber polynomial expansion method, we then determined general coefficient bounds $ |a_{n}| $, for $ n\geq 3 $. We also highlight some known consequences of our main results.</p></abstract>


2021 ◽  
Vol 39 (4) ◽  
pp. 153-164
Author(s):  
Ahmad Zireh ◽  
Saideh Hajiparvaneh

‎In this paper‎, ‎we introduce and investigate a subclass‎ of analytic and bi-univalent functions which both $f(z)$ and $f^{-1}(z)$ are m-fold symmetric in the open unit disk U‎. Furthermore‎, ‎we find upper bounds for the initial coefficients $|a_{m‎ + ‎1}|$ and $|a_{2m‎ + ‎1}|$ for functions in this subclass‎. ‎The results presented in this paper would generalize and improve some recent works‎.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 363 ◽  
Author(s):  
Rabha W. Ibrahim ◽  
Rafida M. Elobaid ◽  
Suzan J. Obaiys

It is well known that the conformable and the symmetric differential operators have formulas in terms of the first derivative. In this document, we combine the two definitions to get the symmetric conformable derivative operator (SCDO). The purpose of this effort is to provide a study of SCDO connected with the geometric function theory. These differential operators indicate a generalization of well known differential operator including the Sàlàgean differential operator. Our contribution is to impose two classes of symmetric differential operators in the open unit disk and to describe the further development of these operators by introducing convex linear symmetric operators. In addition, by acting these SCDOs on the class of univalent functions, we display a set of sub-classes of analytic functions having geometric representation, such as starlikeness and convexity properties. Investigations in this direction lead to some applications in the univalent function theory of well known formulas, by defining and studying some sub-classes of analytic functions type Janowski function and convolution structures. Moreover, by using the SCDO, we introduce a generalized class of Briot–Bouquet differential equations to introduce, what is called the symmetric conformable Briot–Bouquet differential equations. We shall show that the upper bound of this class is symmetric in the open unit disk.


2021 ◽  
Vol 39 (2) ◽  
pp. 87-104
Author(s):  
Ebrahim Analouei Adegani ◽  
Ahmad Zireh ◽  
Mostafa Jafari

In this work, we introduce a new subclas of bi-univalent functions which is defined by Hadamard product andsubordination in the open unit disk. and find upper bounds for the second and third coefficients for functions in this new subclass. Further, we generalize and improve some of the previously published results.


2021 ◽  
Vol 20 ◽  
pp. 105-114
Author(s):  
Najah Ali Jiben Al-Ziadi

\In this work we present and investigate three new subclasses of  the function class  of bi-univalent functions in the open unit disk  defined by means of the Horadam polynomials. Furthermore, for functions in each of the subclasses introduced here, we obtain upper bounds for the initial coefficients  and . Also, we debate Fekete-Szegӧ inequality for functions belongs to these subclasses.    


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 306 ◽  
Author(s):  
Suhila Elhaddad ◽  
Maslina Darus

Recently, a number of features and properties of interest for a range of bi-univalent and univalent analytic functions have been explored through systematic study, e.g., coefficient inequalities and coefficient bounds. This study examines S q δ ( ϑ , η , ρ , ν ; ψ ) as a novel general subclass of Σ which comprises normalized analytic functions, as well as bi-univalent functions within Δ as an open unit disk. The study locates estimates for the | a 2 | and | a 3 | Taylor–Maclaurin coefficients in functions of the class which is considered. Additionally, links with a number of previously established findings are presented.


Sign in / Sign up

Export Citation Format

Share Document