scholarly journals Faber polynomial coefficients estimates for certain subclasses of $ q $-Mittag-Leffler-Type analytic and bi-univalent functions

2021 ◽  
Vol 7 (2) ◽  
pp. 2512-2528
Author(s):  
Zeya Jia ◽  
◽  
Nazar Khan ◽  
Shahid Khan ◽  
Bilal Khan ◽  
...  

<abstract><p>In this paper, we introduce the $ q $-analogus of generalized differential operator involving $ q $-Mittag-Leffler function in open unit disk</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} E = \left \{ z:z\in \mathbb{C\ \ }\text{ and} \ \ \left \vert z\right \vert &lt;1\right \} \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>and define new subclass of analytic and bi-univalent functions. By applying the Faber polynomial expansion method, we then determined general coefficient bounds $ |a_{n}| $, for $ n\geq 3 $. We also highlight some known consequences of our main results.</p></abstract>

Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Hari Mohan Srivastava ◽  
Ahmad Motamednezhad ◽  
Safa Salehian

In this paper, we introduce a new comprehensive subclass ΣB(λ,μ,β) of meromorphic bi-univalent functions in the open unit disk U. We also find the upper bounds for the initial Taylor-Maclaurin coefficients |b0|, |b1| and |b2| for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients |bn|(n≧1) for functions in the subclass ΣB(λ,μ,β) by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.


2017 ◽  
Vol 84 (1-2) ◽  
pp. 73
Author(s):  
Amol B. Patil ◽  
Uday H. Naik

In the present investigation we introduce two subclasses Ν<sub>Σ</sub><sup>δ</sup>,<sup>μ</sup> [η, α, λ] and Ν<sub>Σ</sub><sup>δ</sup>,<sup>μ</sup> (η, β, λ) of the function class Σ of bi-univalent functions defined in the open unit disk. These subclasses are defined by using the Al-Oboudi differential operator, which is the generalized Salagean's differential operator. Also we find estimates on initial coeffcients |a<sub>2</sub>| and |a<sub>3</sub>| for the functions in these subclasses and consider some related subclasses in connection with these subclasses.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hameed Ur Rehman ◽  
Maslina Darus ◽  
Jamal Salah

In the present paper, the authors implement the two analytic functions with its positive real part in the open unit disk. New types of polynomials are introduced, and by using these polynomials with the Faber polynomial expansion, a formula is structured to solve certain coefficient problems. This formula is applied to a certain class of bi-univalent functions and solve the n -th term of its coefficient problems. In the last section of the article, several well-known classes are also extended to its n -th term.


Filomat ◽  
2015 ◽  
Vol 29 (8) ◽  
pp. 1839-1845 ◽  
Author(s):  
H.M. Srivastava ◽  
Sevtap Eker ◽  
Rosihan Alic

In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions in the open unit disk U. By using the Faber polynomial expansions, we obtain upper bounds for the coefficients of functions belonging to this analytic and bi-univalent function class. Some interesting recent developments involving other subclasses of analytic and bi-univalent functions are also briefly mentioned.


2018 ◽  
Vol 68 (2) ◽  
pp. 369-378 ◽  
Author(s):  
Ahmad Zireh ◽  
Ebrahim Analouei Adegani ◽  
Mahmood Bidkham

Abstract In this paper, we use the Faber polynomial expansion to find upper bounds for |an| (n ≥ 3) coefficients of functions belong to classes $\begin{array}{} H_{q}^{\Sigma}(\lambda,h),\, ST_{q}^{\Sigma}(\alpha,h)\,\text{ and} \,\,M_{q}^{\Sigma}(\alpha,h) \end{array}$ which are defined by quasi-subordinations in the open unit disk 𝕌. Further, we generalize some of the previously published results.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 363 ◽  
Author(s):  
Rabha W. Ibrahim ◽  
Rafida M. Elobaid ◽  
Suzan J. Obaiys

It is well known that the conformable and the symmetric differential operators have formulas in terms of the first derivative. In this document, we combine the two definitions to get the symmetric conformable derivative operator (SCDO). The purpose of this effort is to provide a study of SCDO connected with the geometric function theory. These differential operators indicate a generalization of well known differential operator including the Sàlàgean differential operator. Our contribution is to impose two classes of symmetric differential operators in the open unit disk and to describe the further development of these operators by introducing convex linear symmetric operators. In addition, by acting these SCDOs on the class of univalent functions, we display a set of sub-classes of analytic functions having geometric representation, such as starlikeness and convexity properties. Investigations in this direction lead to some applications in the univalent function theory of well known formulas, by defining and studying some sub-classes of analytic functions type Janowski function and convolution structures. Moreover, by using the SCDO, we introduce a generalized class of Briot–Bouquet differential equations to introduce, what is called the symmetric conformable Briot–Bouquet differential equations. We shall show that the upper bound of this class is symmetric in the open unit disk.


2020 ◽  
Vol 28 (1) ◽  
pp. 105-114
Author(s):  
Rabha W. Ibrahim

AbstractInequality study is a magnificent field for investigating the geometric behaviors of analytic functions in the open unit disk calling the subordination and superordination. In this work, we aim to formulate a generalized differential-difference operator. We introduce a new class of analytic functions having the generalized operator. Some subordination results are included in the sequel.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Serap Bulut

We introduce and investigate an interesting subclass𝒩𝒫Σλ,δ(n,β;h)of analytic and bi-univalent functions in the open unit disk𝕌. For functions belonging to the class𝒩𝒫Σλ,δ(n,β;h), we obtain estimates on the first two Taylor-Maclaurin coefficientsa2anda3.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Saqib Hussain ◽  
Shahid Khan ◽  
Muhammad Asad Zaighum ◽  
Maslina Darus ◽  
Zahid Shareef

We introduce in our present investigation a new subclass of analytic and biunivalent functions associated with Ruscheweyh q-differential operator in open unit disk E. We use the Faber polynomial expansions to find nth coefficients bounds of class of bisubordinate functions and also find initial coefficient estimates.


2021 ◽  
pp. 2000-2008
Author(s):  
Aqeel Ketab Al-khafaji

In this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:     which is defined in the open unit disk  satisfying the following condition This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.


Sign in / Sign up

Export Citation Format

Share Document