Faber polynomial coefficients estimates for certain subclasses of $ q $-Mittag-Leffler-Type analytic and bi-univalent functions
Keyword(s):
<abstract><p>In this paper, we introduce the $ q $-analogus of generalized differential operator involving $ q $-Mittag-Leffler function in open unit disk</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} E = \left \{ z:z\in \mathbb{C\ \ }\text{ and} \ \ \left \vert z\right \vert <1\right \} \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>and define new subclass of analytic and bi-univalent functions. By applying the Faber polynomial expansion method, we then determined general coefficient bounds $ |a_{n}| $, for $ n\geq 3 $. We also highlight some known consequences of our main results.</p></abstract>
Keyword(s):
Keyword(s):
Keyword(s):
Keyword(s):
Keyword(s):
Keyword(s):
Keyword(s):