Estimates on Initial Coefficients of Certain Subclasses of Bi-Univalent Functions Associated with Al-Oboudi Differential Operator

2017 ◽  
Vol 84 (1-2) ◽  
pp. 73
Author(s):  
Amol B. Patil ◽  
Uday H. Naik

In the present investigation we introduce two subclasses Ν<sub>Σ</sub><sup>δ</sup>,<sup>μ</sup> [η, α, λ] and Ν<sub>Σ</sub><sup>δ</sup>,<sup>μ</sup> (η, β, λ) of the function class Σ of bi-univalent functions defined in the open unit disk. These subclasses are defined by using the Al-Oboudi differential operator, which is the generalized Salagean's differential operator. Also we find estimates on initial coeffcients |a<sub>2</sub>| and |a<sub>3</sub>| for the functions in these subclasses and consider some related subclasses in connection with these subclasses.

2019 ◽  
Vol 12 (02) ◽  
pp. 1950017
Author(s):  
H. Orhan ◽  
N. Magesh ◽  
V. K. Balaji

In this work, we obtain an upper bound estimate for the second Hankel determinant of a subclass [Formula: see text] of analytic bi-univalent function class [Formula: see text] which is associated with Chebyshev polynomials in the open unit disk.


Author(s):  
Ismaila O. Ibrahim ◽  
Timilehin G. Shaba ◽  
Amol B. Patil

In the present investigation, we introduce the subclasses $\Lambda_{\Sigma_m}^{\rightthreetimes}(\sigma,\phi,\upsilon)$ and $\Lambda_{\Sigma_m}^{\rightthreetimes}(\sigma,\gamma,\upsilon)$ of $m$-fold symmetric bi-univalent function class $\Sigma_m$, which are associated with the Sakaguchi type of functions and defined in the open unit disk. Further, we obtain estimates on the initial coefficients $b_{m+1}$ and $b_{2m+1}$ for the functions of these subclasses and find out connections with some of the familiar classes.


Author(s):  
Timilehin G. Shaba ◽  
Amol B. Patil

In the present investigation, we introduce the subclasses $\varLambda_{\Sigma}^{m}(\eta,\leftthreetimes,\phi)$ and $\varLambda_{\Sigma}^{m}(\eta,\leftthreetimes,\delta)$ of \textit{m}-fold symmetric bi-univalent function class $\Sigma_m$, which are associated with the pseudo-starlike functions and defined in the open unit disk $\mathbb{U}$. Moreover, we obtain estimates on the initial coefficients $|b_{m+1}|$ and $|b_{2m+1}|$ for the functions belong to these subclasses and identified correlations with some of the earlier known classes.


Filomat ◽  
2021 ◽  
Vol 35 (4) ◽  
pp. 1305-1313
Author(s):  
Amol Patil ◽  
Uday Naik

In the present investigation, with motivation from the pioneering work of Srivastava et al. [28], which in recent years actually revived the study of analytic and bi-univalent functions, we introduce the subclasses T*?(n,?) and T?(n,?) of analytic and bi-univalent function class ? defined in the open unit disk U = {z ? C : |z| < 1g and involving the S?l?gean derivative operator Dn. Moreover, we derive estimates on the initial coefficients |a2| and |a3| for functions in these subclasses and pointed out connections with some earlier known results.


Filomat ◽  
2018 ◽  
Vol 32 (4) ◽  
pp. 1313-1322 ◽  
Author(s):  
H.M. Srivastava ◽  
Müge Sakar ◽  
Güney Özlem

In the present paper, we introduce and investigate a new class of analytic and bi-univalent functions f (z) in the open unit disk U. For this purpose, we make use of a linear combination of the following three functions: f(z)/z, f'(z) and z f''(z) for a function belonging to the normalized univalent function class S. By applying the technique involving the Faber polynomials, we determine estimates for the general Taylor-Maclaurin coefficient of functions belonging to the analytic and bi-univalent function class which we have introduced here. We also demonstrate the not-too-obvious behaviour of the first two Taylor-Maclaurin coefficients of such functions.


Filomat ◽  
2015 ◽  
Vol 29 (8) ◽  
pp. 1839-1845 ◽  
Author(s):  
H.M. Srivastava ◽  
Sevtap Eker ◽  
Rosihan Alic

In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions in the open unit disk U. By using the Faber polynomial expansions, we obtain upper bounds for the coefficients of functions belonging to this analytic and bi-univalent function class. Some interesting recent developments involving other subclasses of analytic and bi-univalent functions are also briefly mentioned.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 783 ◽  
Author(s):  
Ibtisam Aldawish ◽  
Tariq Al-Hawary ◽  
B. A. Frasin

Let Ω denote the class of functions f ( z ) = z + a 2 z 2 + a 3 z 3 + ⋯ belonging to the normalized analytic function class A in the open unit disk U = z : z < 1 , which are bi-univalent in U , that is, both the function f and its inverse f − 1 are univalent in U . In this paper, we introduce and investigate two new subclasses of the function class Ω of bi-univalent functions defined in the open unit disc U , which are associated with a new differential operator of analytic functions involving binomial series. Furthermore, we find estimates on the Taylor–Maclaurin coefficients | a 2 | and | a 3 | for functions in these new subclasses. Several (known or new) consequences of the results are also pointed out.


2021 ◽  
Vol 7 (2) ◽  
pp. 2512-2528
Author(s):  
Zeya Jia ◽  
◽  
Nazar Khan ◽  
Shahid Khan ◽  
Bilal Khan ◽  
...  

<abstract><p>In this paper, we introduce the $ q $-analogus of generalized differential operator involving $ q $-Mittag-Leffler function in open unit disk</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} E = \left \{ z:z\in \mathbb{C\ \ }\text{ and} \ \ \left \vert z\right \vert &lt;1\right \} \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>and define new subclass of analytic and bi-univalent functions. By applying the Faber polynomial expansion method, we then determined general coefficient bounds $ |a_{n}| $, for $ n\geq 3 $. We also highlight some known consequences of our main results.</p></abstract>


2016 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Amol Patil ◽  
Uday Naik

v  In the present investigation we introduce some subclasses of the function class ∑ of bi-univalent functions defined in the open unit disk U, which are associated with the quasi-subordination. We obtain the estimates on initial coefficients |a2| and |a3| for the functions in these subclasses. Also several related subclasses are considered and connection with some known results are established.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 363 ◽  
Author(s):  
Rabha W. Ibrahim ◽  
Rafida M. Elobaid ◽  
Suzan J. Obaiys

It is well known that the conformable and the symmetric differential operators have formulas in terms of the first derivative. In this document, we combine the two definitions to get the symmetric conformable derivative operator (SCDO). The purpose of this effort is to provide a study of SCDO connected with the geometric function theory. These differential operators indicate a generalization of well known differential operator including the Sàlàgean differential operator. Our contribution is to impose two classes of symmetric differential operators in the open unit disk and to describe the further development of these operators by introducing convex linear symmetric operators. In addition, by acting these SCDOs on the class of univalent functions, we display a set of sub-classes of analytic functions having geometric representation, such as starlikeness and convexity properties. Investigations in this direction lead to some applications in the univalent function theory of well known formulas, by defining and studying some sub-classes of analytic functions type Janowski function and convolution structures. Moreover, by using the SCDO, we introduce a generalized class of Briot–Bouquet differential equations to introduce, what is called the symmetric conformable Briot–Bouquet differential equations. We shall show that the upper bound of this class is symmetric in the open unit disk.


Sign in / Sign up

Export Citation Format

Share Document