Boundary-Layer Separation Due to Combustion-Induced Pressure Rise in a Supersonic Flow

AIAA Journal ◽  
2009 ◽  
Vol 47 (4) ◽  
pp. 1050-1053 ◽  
Author(s):  
Myles A. Frost ◽  
Dhananjay Y. Gangurde ◽  
Allan Paull ◽  
David J. Mee
2012 ◽  
Vol 706 ◽  
pp. 413-430 ◽  
Author(s):  
R. Yapalparvi ◽  
L. L. Van Dommelen

AbstractThis paper is an extension of work on separation from a downstream moving wall by Ruban et al. (J. Fluid. Mech., vol. 678, 2011, pp. 124–155) and is in particular concerned with the boundary-layer separation in unsteady two-dimensional laminar supersonic flow. In a frame attached to the wall, the separation is assumed to be provoked by a shock wave impinging upon the boundary layer at a point that moves downstream with a non-dimensional speed which is assumed to be of order ${\mathit{Re}}^{\ensuremath{-} 1/ 8} $ where $\mathit{Re}$ is the Reynolds number. In the coordinate system of the shock however, the wall moves upstream. The strength of the shock and its speed are allowed to vary with time on a characteristic time scale that is large compared to ${\mathit{Re}}^{\ensuremath{-} 1/ 4} $. The ‘triple-deck’ model is used to describe the interaction process. The governing equations of the interaction problem can be derived from the Navier–Stokes equations in the limit $\mathit{Re}\ensuremath{\rightarrow} \infty $. The numerical solutions are obtained using a combination of finite differences along the streamwise direction and Chebyshev collocation along the normal direction in conjunction with Newton linearization. In the present study with the wall moving upstream, the evidence is inconclusive regarding the so-called ‘Moore–Rott–Sears’ criterion being satisfied. Instead it is observed that the pressure rise from its initial value is very slow and that a recirculation region forms, the upstream part of which is wedge-shaped, as also observed in turbulent marginal separation for large values of angle of attack.


Author(s):  
Vera Hoferichter ◽  
Christoph Hirsch ◽  
Thomas Sattelmayer

Premixed combustion is a common technology applied in modern gas turbine combustors to minimize nitrogen oxide emissions. However, early mixing of fuel and oxidizer opens up the possibility of flame flashback into the premixing section upstream of the combustion chamber. Especially for highly reactive fuels boundary layer flashback is a serious challenge. For high preheating and burner surface temperatures, boundary layer flashback limits for burner stabilized flames converge to those of so-called confined flames, where the flame is stabilized inside the burner duct. Hence, the prediction of confined flashback limits is a highly technically relevant task. In this study, a predictive model for flashback limits of confined flames is developed for premixed hydrogen-air mixtures. As shown in earlier studies, confined flashback is initiated by boundary layer separation upstream of the flame tip. Hence, the flashback limit can be predicted identifying the minimum pressure rise upstream of a confined flame causing boundary layer separation. For this purpose, the criterion of Stratford is chosen which was originally developed for boundary layer separation in mere aerodynamic phenomena. It is shown in this paper that it can also be applied to near wall combustion processes if the pressure rise upstream of the flame tip is modeled correctly. In order to determine the pressure rise, an expression for the turbulent burning velocity is derived including the effects of flame stretch and turbulence. A comparison of the predicted flashback limits and experimental data shows high prediction accuracy and wide applicability of the developed model.


2011 ◽  
Vol 678 ◽  
pp. 124-155 ◽  
Author(s):  
A. I. RUBAN ◽  
D. ARAKI ◽  
R. YAPALPARVI ◽  
J. S. B. GAJJAR

This study is concerned with the boundary-layer separation from a rigid body surface in unsteady two-dimensional laminar supersonic flow. The separation is assumed to be provoked by a shock wave impinging upon the boundary layer at a point that moves with speed Vsh along the body surface. The strength of the shock and its speed Vsh are allowed to vary with time t, but not too fast, namely, we assume that the characteristic time scale t ≪ Re−1/2/Vw2. Here Re denotes the Reynolds number, and Vw = −Vsh is wall velocity referred to the gas velocity V∞ in the free stream. We show that under this assumption the flow in the region of interaction between the shock and boundary layer may be treated as quasi-steady if it is considered in the coordinate frame moving with the shock. We start with the flow regime when Vw = O(Re−1/8). In this case, the interaction between the shock and boundary layer is described by classical triple-deck theory. The main modification to the usual triple-deck formulation is that in the moving frame the body surface is no longer stationary; it moves with the speed Vw = −Vsh. The corresponding solutions of the triple-deck equations have been constructed numerically. For this purpose, we use a numerical technique based on finite differencing along the streamwise direction and Chebyshev collocation in the direction normal to the body surface. In the second part of the paper, we assume that 1 ≫ Vw ≫ O(Re−1/8), and concentrate our attention on the self-induced separation of the boundary layer. Assuming, as before, that the Reynolds number, Re, is large, the method of matched asymptotic expansions is used to construct the corresponding solutions of the Navier–Stokes equations in a vicinity of the separation point.


Author(s):  
Vera Hoferichter ◽  
Christoph Hirsch ◽  
Thomas Sattelmayer

Premixed combustion is a common technology applied in modern gas turbine combustors to minimize nitrogen oxide emissions. However, early mixing of fuel and oxidizer opens up the possibility of flame flashback into the premixing section upstream of the combustion chamber. Especially, for highly reactive fuels, boundary layer flashback (BLF) is a serious challenge. For high preheating and burner surface temperatures, boundary layer flashback limits for burner stabilized flames converge to those of so-called confined flames, where the flame is stabilized inside the burner duct. Hence, the prediction of confined flashback limits is a highly technically relevant task. In this study, a predictive model for flashback limits of confined flames is developed for premixed hydrogen–air mixtures. As shown in earlier studies, confined flashback is initiated by boundary layer separation upstream of the flame tip. Hence, the flashback limit can be predicted identifying the minimum pressure rise upstream of a confined flame causing boundary layer separation. For this purpose, the criterion of Stratford is chosen which was originally developed for boundary layer separation in mere aerodynamic phenomena. It is shown in this paper that it can also be applied to near-wall combustion processes if the pressure rise upstream of the flame tip is modeled correctly. In order to determine the pressure rise, an expression for the turbulent burning velocity is derived including the effects of flame stretch and turbulence. A comparison of the predicted flashback limits and experimental data shows high prediction accuracy and wide applicability of the developed model.


Sign in / Sign up

Export Citation Format

Share Document