Prediction of Confined Flame Flashback Limits Using Boundary Layer Separation Theory

Author(s):  
Vera Hoferichter ◽  
Christoph Hirsch ◽  
Thomas Sattelmayer

Premixed combustion is a common technology applied in modern gas turbine combustors to minimize nitrogen oxide emissions. However, early mixing of fuel and oxidizer opens up the possibility of flame flashback into the premixing section upstream of the combustion chamber. Especially for highly reactive fuels boundary layer flashback is a serious challenge. For high preheating and burner surface temperatures, boundary layer flashback limits for burner stabilized flames converge to those of so-called confined flames, where the flame is stabilized inside the burner duct. Hence, the prediction of confined flashback limits is a highly technically relevant task. In this study, a predictive model for flashback limits of confined flames is developed for premixed hydrogen-air mixtures. As shown in earlier studies, confined flashback is initiated by boundary layer separation upstream of the flame tip. Hence, the flashback limit can be predicted identifying the minimum pressure rise upstream of a confined flame causing boundary layer separation. For this purpose, the criterion of Stratford is chosen which was originally developed for boundary layer separation in mere aerodynamic phenomena. It is shown in this paper that it can also be applied to near wall combustion processes if the pressure rise upstream of the flame tip is modeled correctly. In order to determine the pressure rise, an expression for the turbulent burning velocity is derived including the effects of flame stretch and turbulence. A comparison of the predicted flashback limits and experimental data shows high prediction accuracy and wide applicability of the developed model.

Author(s):  
Vera Hoferichter ◽  
Christoph Hirsch ◽  
Thomas Sattelmayer

Premixed combustion is a common technology applied in modern gas turbine combustors to minimize nitrogen oxide emissions. However, early mixing of fuel and oxidizer opens up the possibility of flame flashback into the premixing section upstream of the combustion chamber. Especially, for highly reactive fuels, boundary layer flashback (BLF) is a serious challenge. For high preheating and burner surface temperatures, boundary layer flashback limits for burner stabilized flames converge to those of so-called confined flames, where the flame is stabilized inside the burner duct. Hence, the prediction of confined flashback limits is a highly technically relevant task. In this study, a predictive model for flashback limits of confined flames is developed for premixed hydrogen–air mixtures. As shown in earlier studies, confined flashback is initiated by boundary layer separation upstream of the flame tip. Hence, the flashback limit can be predicted identifying the minimum pressure rise upstream of a confined flame causing boundary layer separation. For this purpose, the criterion of Stratford is chosen which was originally developed for boundary layer separation in mere aerodynamic phenomena. It is shown in this paper that it can also be applied to near-wall combustion processes if the pressure rise upstream of the flame tip is modeled correctly. In order to determine the pressure rise, an expression for the turbulent burning velocity is derived including the effects of flame stretch and turbulence. A comparison of the predicted flashback limits and experimental data shows high prediction accuracy and wide applicability of the developed model.


2012 ◽  
Vol 706 ◽  
pp. 413-430 ◽  
Author(s):  
R. Yapalparvi ◽  
L. L. Van Dommelen

AbstractThis paper is an extension of work on separation from a downstream moving wall by Ruban et al. (J. Fluid. Mech., vol. 678, 2011, pp. 124–155) and is in particular concerned with the boundary-layer separation in unsteady two-dimensional laminar supersonic flow. In a frame attached to the wall, the separation is assumed to be provoked by a shock wave impinging upon the boundary layer at a point that moves downstream with a non-dimensional speed which is assumed to be of order ${\mathit{Re}}^{\ensuremath{-} 1/ 8} $ where $\mathit{Re}$ is the Reynolds number. In the coordinate system of the shock however, the wall moves upstream. The strength of the shock and its speed are allowed to vary with time on a characteristic time scale that is large compared to ${\mathit{Re}}^{\ensuremath{-} 1/ 4} $. The ‘triple-deck’ model is used to describe the interaction process. The governing equations of the interaction problem can be derived from the Navier–Stokes equations in the limit $\mathit{Re}\ensuremath{\rightarrow} \infty $. The numerical solutions are obtained using a combination of finite differences along the streamwise direction and Chebyshev collocation along the normal direction in conjunction with Newton linearization. In the present study with the wall moving upstream, the evidence is inconclusive regarding the so-called ‘Moore–Rott–Sears’ criterion being satisfied. Instead it is observed that the pressure rise from its initial value is very slow and that a recirculation region forms, the upstream part of which is wedge-shaped, as also observed in turbulent marginal separation for large values of angle of attack.


AIAA Journal ◽  
2009 ◽  
Vol 47 (4) ◽  
pp. 1050-1053 ◽  
Author(s):  
Myles A. Frost ◽  
Dhananjay Y. Gangurde ◽  
Allan Paull ◽  
David J. Mee

2017 ◽  
Author(s):  
Arkady Zaryankin ◽  
Andrey Rogalev ◽  
Ivan Komarov ◽  
V. Kindra ◽  
S. Osipov

2021 ◽  
Vol 11 (6) ◽  
pp. 2593
Author(s):  
Yasir Al-Okbi ◽  
Tze Pei Chong ◽  
Oksana Stalnov

Leading edge serration is now a well-established and effective passive control device for the reduction of turbulence–leading edge interaction noise, and for the suppression of boundary layer separation at high angle of attack. It is envisaged that leading edge blowing could produce the same mechanisms as those produced by a serrated leading edge to enhance the aeroacoustics and aerodynamic performances of aerofoil. Aeroacoustically, injection of mass airflow from the leading edge (against the incoming turbulent flow) can be an effective mechanism to decrease the turbulence intensity, and/or alter the stagnation point. According to classical theory on the aerofoil leading edge noise, there is a potential for the leading edge blowing to reduce the level of turbulence–leading edge interaction noise radiation. Aerodynamically, after the mixing between the injected air and the incoming flow, a shear instability is likely to be triggered owing to the different flow directions. The resulting vortical flow will then propagate along the main flow direction across the aerofoil surface. These vortical flows generated indirectly owing to the leading edge blowing could also be effective to mitigate boundary layer separation at high angle of attack. The objectives of this paper are to validate these hypotheses, and combine the serration and blowing together on the leading edge to harvest further improvement on the aeroacoustics and aerodynamic performances. Results presented in this paper strongly indicate that leading edge blowing, which is an active flow control method, can indeed mimic and even enhance the bio-inspired leading edge serration effectively.


1968 ◽  
Vol 32 (2) ◽  
pp. 293-304 ◽  
Author(s):  
V. A. Sandborn ◽  
C. Y. Liu

An experimental and analytical study of the separation of a turbulent boundary layer is reported. The turbulent boundary-layer separation model proposed by Sandborn & Kline (1961) is demonstrated to predict the experimental results. Two distinct turbulent separation regions, an intermittent and a steady separation, with correspondingly different velocity distributions are confirmed. The true zero wall shear stress turbulent separation point is determined by electronic means. The associated mean velocity profile is shown to belong to the same family of profiles as found for laminar separation. The velocity distribution at the point of reattachment of a turbulent boundary layer behind a step is also shown to belong to the laminar separation family.Prediction of the location of steady turbulent boundary-layer separation is made using the technique employed by Stratford (1959) for intermittent separation.


Sign in / Sign up

Export Citation Format

Share Document