Influence of Common Modeling Choices for High-Speed Transverse Jet-Interaction Simulations

2013 ◽  
Vol 29 (5) ◽  
pp. 1076-1086 ◽  
Author(s):  
Adrian S. Pudsey ◽  
Russell R. Boyce ◽  
Vincent Wheatley
2020 ◽  
Vol 105 ◽  
pp. 106005 ◽  
Author(s):  
Jiang Lai ◽  
Zhongliang Zhao ◽  
Xiaobing Wang ◽  
Hao Li ◽  
Qian Li

Author(s):  
Warren G. Lamont ◽  
Mario Roa ◽  
Scott E. Meyer ◽  
Robert P. Lucht

An optically accessible combustion rig was constructed to study the combustion characteristics of a reactive jet in a vitiated crossflow. The rig features two staged combustion zones. The main combustion zone is a swirl stabilized dump combustor. The second combustion zone, which is axially downstream from the main combustion zone, is formed by a transverse jet injecting either fuel or a premixed fuel/air mixture into the vitiated stream. The rig was designed to investigate the transverse jet conditions, equivalence ratio, and momentum ratios that produce low NOx and give an adequate temperature rise before the simulated high pressure turbine. A water-cooled sampling probe extracts exhaust gas downstream for emission measurements. As a baseline, the main combustion zone was fired without the transverse jet and the results compare closely to the work of previous researchers. The emission survey with the transverse jet found several conditions that show a benefit of staging compared to the baseline of firing only the main combustion zone. The flame structure from the transverse jet was captured using high speed CH* chemiluminescence, which shows the extent of the flame front and its penetration depth into the vitiated stream. The chemiluminescence images were averaged and compared to the Holdeman correlation, which showed good agreement for injection with fuel only but poorer agreement when premixed.


2021 ◽  
pp. 146808742110384
Author(s):  
Jinxin Yang ◽  
Lingzhe Rao ◽  
Charitha de Silva ◽  
Sanghoon Kook

This study applies Flame Image Velocimetry (FIV) to show the in-flame flow field development with an emphasis on the jet-jet interaction and jet-swirl interaction phenomena in a single-cylinder small-bore optically accessible diesel engine. Two-hole nozzle injectors with three different inter-jet spacing angles of 45°, 90° and 180° are prepared to cause different levels of jet-jet interaction. The engine has a swirl ratio of 1.7, which is used to evaluate jet-swirl interaction of the selected 180° inter-jet spacing nozzle. High-speed soot luminosity imaging was performed at a high frame rate of 45 kHz for the FIV processing. For each inter-jet spacing angle, a total of 100 individual combustion cycles were recorded to address the cyclic variations. The ensemble averaged flow fields are shown to illustrate detailed flow structures while the Reynolds decomposition using spatial filtering is applied to analyse turbulence intensity. The results showed reduced bulk flow magnitude and turbulence intensity at smaller inter-jet spacing, suggesting the two opposed wall-jet heads colliding immediately after the jet impingement on the wall can cause flow suppression effects. This raised a concern on the mixing as lower inter-jet spacing creates more fuel-rich mixtures in the jet-jet interaction region. Despite lower flow magnitude, the cyclic variation was also estimated higher for narrower inter-jet spacing, which is another drawback of the significant jet-jet interaction. Regarding the jet-swirl interaction, the wall-jet head penetrating on the up-swirl side showed lower bulk flow magnitude as the counter-flow arrangement suppressed the flow, similar with the narrower interact-jet spacing results. However, the turbulence intensity was measured higher on the up-swirl side, suggesting the relatively weaker swirl flow vectors opposed to the penetrating wall-jet head could in fact enhance the mixing.


2013 ◽  
Vol 30 (1) ◽  
pp. 87-96 ◽  
Author(s):  
C. M. Hsu ◽  
R. F. Huang

ABSTRACTThe influences of acoustic excitation on the velocity field and mixing characteristic of a jet in cross-flow were investigated in a wind tunnel. The acoustic excitation waves at resonance Strouhal number were generated by a loudspeaker. The time-averaged velocity field and streamlines of the excited elevated transverse jet in the symmetry plane were measured by a high-speed particle image velocimetry. The visual penetration height and spread width were obtained by using an image processing technique. The dispersion characteristics were obtained from the tracer-gas concentration measurement. The results showed that the streamline pattern of the non-excited transverse jet was significantly modified by the acoustic excitation—the bent streamlines evolved from the jet exit escalated and the vortex rings in the jet and tube wakes and the recirculation bubble in the jet wake disappeared. The time-averaged velocity distributions revealed that the excited transverse jet produces large momentum in the up-shooting direction so that the velocity trajectories were located at levels higher than those of the non-excited one. The mixing characteristics, which include the visual penetration height, spread width, and dispersion, were drastically improved by the acoustic excitation due to the changes in the flow structures. The excited transverse jet characterized at larger jet-to-crossflow momentum flux ratios presented larger improvement in the mixing characteristics than at lower jet-to-crossflow momentum flux ratios.


Sign in / Sign up

Export Citation Format

Share Document