Generalized vortex lattice method for oscillating lifting surfaces in subsonic flow

AIAA Journal ◽  
1992 ◽  
Vol 30 (12) ◽  
pp. 3006-3019
AIAA Journal ◽  
1993 ◽  
Vol 31 (12) ◽  
pp. 2380-2381 ◽  
Author(s):  
Paulo A. O. Soviero

1985 ◽  
Vol 107 (4) ◽  
pp. 438-443 ◽  
Author(s):  
J. Katz

A numerical technique was developed to investigate the performance of automotive lifting surfaces in close proximity to ground. The model is based on the Vortex Lattice Method and includes freely-deforming wake elements. The ground effect was simulated by reflection and both steady and unsteady pressures and loads on various wing planforms were considered. Calculated results are presented for wings having both positive and negative incidences, with and without ground effect. Also the transient lift of a wing in a plunging motion was analyzed in ground proximity and at a negative angle of attack. Finally the periodic lift fluctuations on the front winglet of a racing car, due to its suspension oscillations, were calculated and found to exceed approximately twice the steady-state value.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1230-1233
Author(s):  
Paulo A. O. Soviero ◽  
Hugo B. Resende

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Sen Mao ◽  
Changchuan Xie ◽  
Lan Yang ◽  
Chao Yang

A morphing trailing-edge (TE) wing is an important morphing mode in aircraft design. In order to explore the static aeroelastic characteristics of a morphing TE wing, an efficient and feasible method for static aeroelastic analysis has been developed in this paper. A geometrically exact vortex lattice method (VLM) is applied to calculate the aerodynamic forces. Firstly, a typical model of a morphing TE wing is chosen and built which has an active morphing trailing edge driven by a piezoelectric patch. Then, the paper carries out the static aeroelastic analysis of the morphing TE wing and corresponding simulations were carried out. Finally, the analysis results are compared with those of a traditional wing with a rigid trailing edge using the traditional linearized VLM. The results indicate that the geometrically exact VLM can better describe the aerodynamic nonlinearity of a morphing TE wing in consideration of geometrical deformation in aeroelastic analysis. Moreover, out of consideration of the angle of attack, the deflection angle of the trailing edge, among others, the wing system does not show divergence but bifurcation. Consequently, the aeroelastic analysis method proposed in this paper is more applicable to the analysis and design of a morphing TE wing.


2013 ◽  
Vol 26 (3) ◽  
pp. 514-521 ◽  
Author(s):  
Changchuan Xie ◽  
Libo Wang ◽  
Chao Yang ◽  
Yi Liu

Sign in / Sign up

Export Citation Format

Share Document