Wall pressure fluctuations in attached boundary-layer flow

AIAA Journal ◽  
1983 ◽  
Vol 21 (4) ◽  
pp. 495-502 ◽  
Author(s):  
A. L. Laganelli ◽  
A. Martellucci ◽  
L. L. Shaw
2000 ◽  
Vol 108 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Timothy A. Brungart ◽  
Wayne J. Holmberg ◽  
Arnold A. Fontaine ◽  
Steven Deutsch ◽  
Howard L. Petrie

Author(s):  
Walter A. Kargus ◽  
Gerald C. Lauchle

The acoustic radiation from a turbulent boundary layer that occurs downstream of a rearward facing step discontinuity and reattaches to a flat plat is considred experimentally. The step is exposed ot a zero incidence, uniform subsonic flow. a quiet wall jet facility situated in an anechoic chamber is used for the studies. The “point” wall pressure spectra are measured by small, “pinhole” microphones located at various locations under the layer, including a point directly in the 90° corner of the step. The wall pressure fluctuations measured at the various locations are correlated with the signal detected by a far-field microphone. The measured cross-spectral densities are thus used to identify the relative contributions of the various flow regimes to the direct radiation. It is shown that the separation of the flow over the corner of the step is a dominant acoustic source, which is supported not only by the measured cross spectra, but also by the favorable comparison of the measured velocity power law to the theoretical value. Measurements made where the flow reattaches and at the turbulent boundary layer are less conclusive. This is because the pinhole tube attached to the microphone produced a sound due to a fluid-dynamic oscillation, which contaminated the measurement of the aeroacoustic sources.


1986 ◽  
Vol 108 (3) ◽  
pp. 301-307 ◽  
Author(s):  
T. M. Farabee ◽  
M. J. Casarella

Measurements were made of the wall pressure field beneath separated/reattached boundary layer flows. These flows consisted of two types; flow over a forward-facing step and flow over a backward-facing step. Wall pressure fluctuations from an equilibrium flat plate boundary layer flow were also measured and used as a baseline for comparative purposes. Values of the RMS fluctuating pressure as well as the frequency spectral density, phase velocity, and coherence of the surface pressure field were measured at various locations upstream and downstream of the steps. The experimental results show that the separation-reattachment process produces large-amplitude, low-frequency pressure fluctuations. The measured spectral statistics of the wall pressure fluctuations are consistent with the view that at reattachment there exists a region of coherent highly energized velocity fluctuations located near the wall which, as it convects downstream, decays and diffuses away from the wall. This energized region remains identifiable in the wall pressure statistics as far as 72 step heights downstream of the backward-facing step.


Author(s):  
Frank J. Aldrich

A physics-based approach is employed and a new prediction tool is developed to predict the wavevector-frequency spectrum of the turbulent boundary layer wall pressure fluctuations for subsonic airfoils under the influence of adverse pressure gradients. The prediction tool uses an explicit relationship developed by D. M. Chase, which is based on a fit to zero pressure gradient data. The tool takes into account the boundary layer edge velocity distribution and geometry of the airfoil, including the blade chord and thickness. Comparison to experimental adverse pressure gradient data shows a need for an update to the modeling constants of the Chase model. To optimize the correlation between the predicted turbulent boundary layer wall pressure spectrum and the experimental data, an optimization code (iSIGHT) is employed. This optimization module is used to minimize the absolute value of the difference (in dB) between the predicted values and those measured across the analysis frequency range. An optimized set of modeling constants is derived that provides reasonable agreement with the measurements.


Sign in / Sign up

Export Citation Format

Share Document