Characterization of Microfabricated Shear Stress Sensors

2007 ◽  
Vol 134 (1) ◽  
pp. 77-87 ◽  
Author(s):  
A. Alvin Barlian ◽  
Sung-Jin Park ◽  
Vikram Mukundan ◽  
Beth L. Pruitt

Author(s):  
A. Alvin Barlian ◽  
Sung-Jin Park ◽  
Vikram Mukundan ◽  
Beth L. Pruitt

This paper presents the design, fabrication, and characterization of unique piezoresistive microfabricated shear stress sensors for direct measurements of shear stress underwater. The uniqueness of this design is in its transduction scheme which uses sidewall-implanted piezoresistors to measure lateral force (and shear stress), along with traditional top-implanted piezoresistors to detect normal forces. Aside from the oblique-implant technique, the fabrication process also includes hydrogen anneal step to smooth scalloped silicon sidewalls due to Deep Reactive Ion Etch process, which was shown to reduce 1/f noise level by almost an order of magnitude for the sidewall-implanted piezoresistors. Lateral sensitivity characterization of the sensors was done using a microfabricated silicon cantilever force sensor, while out-of-plane characterization was done using Laser Doppler Vibrometry technique. In-plane sensitivity and out-of-plane crosstalk were characterized, as well as hysteresis and repeatability of the measurements. The sensors are designed to be used underwater for various applications.


2007 ◽  
Vol 991 ◽  
Author(s):  
Andrew Mueller ◽  
Robert White ◽  
Vincent Manno ◽  
Chris Rogers ◽  
Sriram Anjur ◽  
...  

ABSTRACTThis paper describes the fabrication and calibration of micromachined shear stress sensors intended for characterization of the local pad-wafer contact forces present during chemical-mechanical polishing. Sensors consist of arrays of microfabricated poly-dimethyl-siloxane (PDMS) posts and are able to measure forces ranging from 2 to 200 μN. The posts are 100 μm high and have diameters of 40-100 μm. Calibrated post deflection sensitivities are linear and lie between 0.2 μm/μN and 1.3μm/μN. Sensor design, fabrication, and calibration are detailed. Feasibility is established for sensor integration into a CMP scale model test setup, including an optical viewing method for observing post deflection during polishing. Initial micrographs of post deflection during polishing do not yet have sufficient resolution to determine the microscale forces during polishing.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 66-72
Author(s):  
Tao Pan ◽  
Daniel Hyman ◽  
Mehran Mehregany ◽  
Eli Reshotko ◽  
Steven Garverick

AIAA Journal ◽  
2002 ◽  
Vol 40 (8) ◽  
pp. 1582-1588 ◽  
Author(s):  
Mehul P. Patel ◽  
Eli Reshotko ◽  
Daniel Hyman

Author(s):  
Risa Robinson ◽  
Lynn Fuller ◽  
Harvey Palmer ◽  
Mary Frame

Blood flow regulation in the microvascular network has been investigated by means of computational fluid dynamics, in vivo particle tracking and microchannel models. It is evident from these studies that shear stress along the wall is a key factor in the communication network that results in blood flow modification, yet current methods for shear stress determination are acknowledged to be imprecise. Micromachining technology allows for the development of implantable shear stress sensors that will enable us to monitor wall shear stress at multiple locations in arteriole bifurcations. In this study, a microchannel was employed as an in vitro model of a microvessel. Thermal shear stress sensors were used to mimic the endothelial cells that line the vessel wall. A three dimensional computational model was created to simulate the system’s thermal response to the constant temperature control circuit and related wall shear stress. The model geometry included a silicon wafer section with all the fabrication layers — silicon dioxide, poly silicon resistor, silicon nitride — and a microchannel with cross section 17 μm × 17 μm. This computational technique was used to optimize the dimensions of the system for a 0.01 Reynolds number flow at room temperature in order to reduce the amount of heat lost to the substrate and to predict and maximize the signal response. Results of the design optimization are presented and the fabrication process discussed.


Author(s):  
Tao Pan ◽  
D. Hyman ◽  
M. Mehregany ◽  
E. Reshotko ◽  
B. Willis

Sign in / Sign up

Export Citation Format

Share Document