Flexed beams in central receiver heliostat drives

1978 ◽  
Author(s):  
W. RASER
Keyword(s):  
Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 296-311
Author(s):  
Arslan A. Rizvi ◽  
Syed N. Danish ◽  
Abdelrahman El-Leathy ◽  
Hany Al-Ansary ◽  
Dong Yang

1989 ◽  
Vol 111 (3) ◽  
pp. 193-203
Author(s):  
James A. Dirks ◽  
Clement J. Chiang

Typically, solar thermal power plants are designed to minimize the levelized energy cost. However, to maximize the benefit of a solar plant and, hence, maximize the wealth of an investor or a utility, a solar plant should be designed and operated with the objective of maximizing the value-to-cost ratio. This paper describes a value and cost analysis of solar central receiver power plants using molten salt external receiver technology. These plants were assumed to operate within the service area of the Southern California Edison Company. The SOLERGY computer code was used to simulate the performance of the solar plants using 1984 weather data for Barstow, California. A value-maximizing dispatch strategy that uses thermal storage to shift operation of the turbine from nonpeak demand periods to the utility’s peak demand period, is shown to greatly increase the value of a solar central receiver power plant with little increase in the levelized energy cost. Results are presented as functions of storage capacity, type of dispatch strategy, size of the field relative to the turbine, and turbine size.


2015 ◽  
Vol 69 ◽  
pp. 158-167 ◽  
Author(s):  
L. Meng ◽  
Z. You ◽  
S. Dubowsky ◽  
B. Li ◽  
F. Xing

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
J. Ignacio Ortega ◽  
J. Ignacio Burgaleta ◽  
Félix M. Téllez

Of all the technologies being developed for solar thermal power generation, central receiver systems (CRSs) are able to work at the highest temperatures and to achieve higher efficiencies in electricity production. The combination of this concept and the choice of molten salts as the heat transfer fluid, in both the receiver and heat storage, enables solar collection to be decoupled from electricity generation better than water∕steam systems, yielding high capacity factors with solar-only or low hybridization ratios. These advantages, along with the benefits of Spanish legislation on solar energy, moved SENER to promote the 17MWe Solar TRES plant. It will be the first commercial CRS plant with molten-salt storage and will help consolidate this technology for future higher-capacity plants. This paper describes the basic concept developed in this demonstration project, reviewing the experience accumulated in the previous Solar TWO project, and present design innovations, as a consequence of the development work performed by SENER and CIEMAT and of the technical conditions imposed by Spanish legislation on solar thermal power generation.


Sign in / Sign up

Export Citation Format

Share Document