Acoustic characteristics of two hybrid inlets at forward speed

1979 ◽  
Author(s):  
M. FALARSKI ◽  
M. MOORE
1980 ◽  
Vol 17 (2) ◽  
pp. 106-111 ◽  
Author(s):  
Michael D. Falarski ◽  
Michael T. Moore

Author(s):  
Billy Irwin

Abstract Purpose: This article discusses impaired prosody production subsequent to traumatic brain injury (TBI). Prosody may affect naturalness and intelligibility of speech significantly, often for the long term, and TBI may result in a variety of impairments. Method: Intonation, rate, and stress production are discussed in terms of the perceptual, physiological, and acoustic characteristics associated with TBI. Results and Conclusions: All aspects of prosodic production are susceptible to the effects of damage resulting from TBI. There are commonly associated prosodic impairments; however, individual variations in specific aspects of prosody require detailed analysis.


Author(s):  
Rachel L. C. Mitchell ◽  
Rachel A. Kingston

It is now accepted that older adults have difficulty recognizing prosodic emotion cues, but it is not clear at what processing stage this ability breaks down. We manipulated the acoustic characteristics of tones in pitch, amplitude, and duration discrimination tasks to assess whether impaired basic auditory perception coexisted with our previously demonstrated age-related prosodic emotion perception impairment. It was found that pitch perception was particularly impaired in older adults, and that it displayed the strongest correlation with prosodic emotion discrimination. We conclude that an important cause of age-related impairment in prosodic emotion comprehension exists at the fundamental sensory level of processing.


Author(s):  
Oscar Ricardo Sandoval Rodriguez ◽  
Vítor Mourão Hanriot ◽  
José Arthur Gonçalves da Silva Teixeira ◽  
Athos Carvalho ◽  
Ramon Molina Valle

2020 ◽  
Vol 68 (3) ◽  
pp. 209-225
Author(s):  
Masaaki Mori ◽  
Kunihiko Ishihara

An aerodynamic sound generated by a flow inside a duct is one of the noise pro- blems. Flows in ducts with uneven surfaces such as grooves or cavities can be seen in various industrial devices and industrial products such as air-conditioning equipment in various plants or piping products. In this article, we have performed experiments and simulations to clarify acoustic and flow-induced sound characteris- tics of L-shaped duct with a shallow cavity installed. The experiments and simula- tions were performed under several inflow velocity conditions. The results show that the characteristics of the flow-induced sound in the duct are strongly affected by the acoustic characteristics of the duct interior sound field and the location of the shallow cavity. Especially, it was found that the acoustic characteristics were af- fected by the location of the shallow cavity in the frequency range between 1000 Hz and 1700 Hz.


Sign in / Sign up

Export Citation Format

Share Document