duration discrimination
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 23)

H-INDEX

31
(FIVE YEARS 2)

Author(s):  
Renata Sadibolova ◽  
Stella Sun ◽  
Devin B. Terhune

AbstractState-dependent network models of sub-second interval timing propose that duration is encoded in states of neuronal populations that need to reset prior to a novel timing operation to maintain optimal timing performance. Previous research has shown that the approximate boundary of this reset interval can be inferred by varying the inter-stimulus interval between two to-be-timed intervals. However, the estimated boundary of this reset interval is broad (250–500 ms) and remains under-specified with implications for the characteristics of state-dependent network dynamics sub-serving interval timing. Here, we probed the interval specificity of this reset boundary by manipulating the inter-stimulus interval between standard and comparison intervals in two sub-second auditory duration discrimination tasks (100 and 200 ms) and a control (pitch) discrimination task using adaptive psychophysics. We found that discrimination thresholds improved with the introduction of a 333 ms inter-stimulus interval relative to a 250 ms inter-stimulus interval in both duration discrimination tasks, but not in the control task. This effect corroborates previous findings of a breakpoint in the discrimination performance for sub-second stimulus interval pairs as a function of an incremental inter-stimulus delay but more precisely localizes the minimal inter-stimulus delay range. These results suggest that state-dependent networks sub-serving sub-second timing require approximately 250–333 ms for the network to reset to maintain optimal interval timing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Atsushi Chiba ◽  
Kazunori Morita ◽  
Ken-ichi Oshio ◽  
Masahiko Inase

AbstractTo investigate neuronal processing involved in the integration of auditory and visual signals for time perception, we examined neuronal activity in prefrontal cortex (PFC) of macaque monkeys during a duration discrimination task with auditory and visual cues. In the task, two cues were consecutively presented for different durations between 0.2 and 1.8 s. Each cue was either auditory or visual and was followed by a delay period. After the second delay, subjects indicated whether the first or the second cue was longer. Cue- and delay-responsive neurons were found in PFC. Cue-responsive neurons mostly responded to either the auditory or the visual cue, and to either the first or the second cue. The neurons responsive to the first delay showed activity that changed depending on the first cue duration and were mostly sensitive to cue modality. The neurons responsive to the second delay exhibited activity that represented which cue, the first or second cue, was presented longer. Nearly half of this activity representing order-based duration was sensitive to cue modality. These results suggest that temporal information with visual and auditory signals was separately processed in PFC in the early stage of duration discrimination and integrated for the final decision.


2021 ◽  
Author(s):  
Paula Ríos López ◽  
Andreas Widmann ◽  
Aurélie Bidet-Caulet ◽  
Nicole Wetzel

Everyday cognitive tasks are rarely performed in a quiet environment. Quite on the contrary, very diverse surrounding acoustic signals such as speech can involuntarily deviate our attention from the task at hand. Despite its tight relation to attentional processes, pupillometry remained a rather unexploited method to measure attention allocation towards irrelevant speech. In the present study, we registered changes in pupil diameter size to quantify the effect of meaningfulness of background speech upon performance in an attentional task. We recruited 41 native German speakers who had neither received formal instruction in French nor had extensive informal contact with this language. The focal task consisted of an auditory oddball task. Participants performed an animal sound duration discrimination task containing frequently repeated standard sounds and rarely presented deviant sounds while a story was read in German or (non-meaningful) French in the background. Our results revealed that, whereas effects of language meaningfulness on attention were not detectable at the behavioural level, participants’ pupil dilated more in response to the sounds of the auditory task when background speech was played in non-meaningful French compared to German, independent of sound type. This could suggest that semantic processing of the native language required attentional resources, which lead to fewer resources devoted to the processing of the sounds of the focal task. Our results highlight the potential of the pupil dilation response for the investigation of subtle cognitive processes that might not surface when only behaviour is measured.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Joshua P. McGeown ◽  
Patria A. Hume ◽  
Stephen Kara ◽  
Doug King ◽  
Alice Theadom

Abstract Objectives To evaluate the clinical utility of tactile somatosensory assessments to assist clinicians in diagnosing sport-related mild traumatic brain injury (SR-mTBI), classifying recovery trajectory based on performance at initial clinical assessment, and determining if neurophysiological recovery coincided with clinical recovery. Research Design Prospective cohort study with normative controls. Methods At admission (n = 79) and discharge (n = 45/79), SR-mTBI patients completed the SCAT-5 symptom scale, along with the following three components from the Cortical Metrics Brain Gauge somatosensory assessment (BG-SA): temporal order judgement (TOJ), TOJ with confounding condition (TOJc), and duration discrimination (DUR). To assist SR-mTBI diagnosis on admission, BG-SA performance was used in logistic regression to discriminate cases belonging to the SR-mTBI sample or a healthy reference sample (pooled BG-SA data for healthy participants in previous studies). Decision trees evaluated how accurately BG-SA performance classified SR-mTBI recovery trajectories. Results BG-SA TOJ, TOJc, and DUR poorly discriminated between cases belonging to the SR-mTBI sample or a healthy reference sample (0.54–0.70 AUC, 47.46–64.71 PPV, 48.48–61.11 NPV). The BG-SA evaluated did not accurately classify SR-mTBI recovery trajectories (> 14-day resolution 48%, ≤14–day resolution 54%, lost to referral/follow-up 45%). Mann-Whitney U tests revealed differences in BG-SA TOJc performance between SR-mTBI participants and the healthy reference sample at initial clinical assessment and at clinical recovery (p < 0.05). Conclusions BG-SA TOJ, TOJc, and DUR appear to have limited clinical utility to assist clinicians with diagnosing SR-mTBI or predicting recovery trajectories under ecologically valid conditions. Neurophysiological abnormalities persisted beyond clinical recovery given abnormal BG-SA TOJc performance observed when SR-mTBI patients achieved clinical recovery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Björn Jörges ◽  
Barbara La Scaleia ◽  
Joan López-Moliner ◽  
Francesco Lacquaniti ◽  
Myrka Zago

AbstractIn a 2-alternative forced-choice protocol, observers judged the duration of ball motions shown on an immersive virtual-reality display as approaching in the sagittal plane along parabolic trajectories compatible with Earth gravity effects. In different trials, the ball shifted along the parabolas with one of three different laws of motion: constant tangential velocity, constant vertical velocity, or gravitational acceleration. Only the latter motion was fully consistent with Newton’s laws in the Earth gravitational field, whereas the motions with constant velocity profiles obeyed the spatio-temporal constraint of parabolic paths dictated by gravity but violated the kinematic constraints. We found that the discrimination of duration was accurate and precise for all types of motions, but the discrimination for the trajectories at constant tangential velocity was slightly but significantly more precise than that for the trajectories at gravitational acceleration or constant vertical velocity. The results are compatible with a heuristic internal representation of gravity effects that can be engaged when viewing projectiles shifting along parabolic paths compatible with Earth gravity, irrespective of the specific kinematics. Opportunistic use of a moving frame attached to the target may favour visual tracking of targets with constant tangential velocity, accounting for the slightly superior duration discrimination.


Author(s):  
Joost de Jong ◽  
Elkan G. Akyürek ◽  
Hedderik van Rijn

AbstractEstimation of time depends heavily on both global and local statistical context. Durations that are short relative to the global distribution are systematically overestimated; durations that are locally preceded by long durations are also overestimated. Context effects are prominent in duration discrimination tasks, where a standard duration and a comparison duration are presented on each trial. In this study, we compare and test two models that posit a dynamically updating internal reference that biases time estimation on global and local scales in duration discrimination tasks. The internal reference model suggests that the internal reference operates during postperceptual stages and only interacts with the first presented duration. In contrast, a Bayesian account of time estimation implies that any perceived duration updates the internal reference and therefore interacts with both the first and second presented duration. We implemented both models and tested their predictions in a duration discrimination task where the standard duration varied from trial to trial. Our results are in line with a Bayesian perspective on time estimation. First, the standard systematically biased estimation of the comparison, such that shorter standards increased the likelihood of reporting that the comparison was shorter. Second, both the previous standard and comparison systematically biased time estimation of subsequent trials in the same direction. Third, more precise observers showed smaller biases. In sum, our findings suggest a common dynamic prior for time that is updated by each perceived duration and where the relative weighting of old and new observations is determined by their relative precision.


2021 ◽  
Author(s):  
Renata Sadibolova ◽  
Stella Sun ◽  
Devin B. Terhune

AbstractState dependent network models of sub-second interval timing propose that duration is encoded in states of neuronal populations that need to reset prior to a novel timing operation in order to maintain optimal timing performance. Previous research has shown that the approximate boundary of this reset interval can be inferred by varying the interstimulus interval between two to-be-timed intervals. However, the estimated boundary of this reset interval is broad (250-500ms) and remains underspecified with implications for the characteristics of state dependent network dynamics subserving interval timing. Here we probed the interval specificity of this reset boundary by manipulating the interstimulus interval between standard and comparison intervals in two sub-second auditory duration discrimination tasks (100 and 200ms) and a control (pitch) discrimination task using adaptive psychophysics. We found that discrimination thresholds improved with the introduction of a 333ms interstimulus interval relative to a 250ms interstimulus interval in both duration discrimination tasks, but not in the control task. This effect corroborates previous findings of a breakpoint in the discrimination performance for sub-second stimulus interval pairs as a function of an incremental interstimulus delay but more precisely localizes the minimal interstimulus delay range. These results suggest that state dependent networks subserving sub-second timing require approximately 250-333ms for the network to reset in order to maintain optimal interval timing.New & NoteworthyThe state-dependent-network model considers interval timing as an intrinsic ability of neuronal populations to track the temporal evolution of their collective state. However, the time-dependent nature of neuronal properties imposes constraints on a maximum encodable interval and on the processing of intervals that are presented before the network resets to its baseline state. Investigating temporal discrimination thresholds as a function of variable inter-stimulus-intervals, we showed that the network reset time is between 250 and 333ms.


2021 ◽  
Vol 14 ◽  
Author(s):  
Anuj Shukla ◽  
Raju S. Bapi

A Theory of Magnitude (ATOM) suggests that space, time, and quantities are processed through a generalized magnitude system. ATOM posits that task-irrelevant magnitudes interfere with the processing of task-relevant magnitudes as all the magnitudes are processed by a common system. Many behavioral and neuroimaging studies have found support in favor of a common magnitude processing system. However, it is largely unknown whether such cross-domain monotonic mapping arises from a change in the accuracy of the magnitude judgments or results from changes in precision of the processing of magnitude. Therefore, in the present study, we examined whether large numerical magnitude affects temporal accuracy or temporal precision, or both. In other words, whether numerical magnitudes change our temporal experience or simply bias duration judgments. The temporal discrimination (between comparison and standard duration) paradigm was used to present numerical magnitudes (“1,” “5,” and “9”) across varied durations. We estimated temporal accuracy (PSE) and precision (Weber ratio) for each numerical magnitude. The results revealed that temporal accuracy (PSE) for large (9) numerical magnitude was significantly lower than that of small (1) and identical (5) magnitudes. This implies that the temporal duration was overestimated for large (9) numerical magnitude compared to small (1) and identical (5) numerical magnitude, in line with ATOM’s prediction. However, no influence of numerical magnitude was observed on temporal precision (Weber ratio). The findings of the present study suggest that task-irrelevant numerical magnitude selectively affects the accuracy of processing of duration but not duration discrimination itself. Further, we argue that numerical magnitude may not directly affect temporal processing but could influence via attentional mechanisms.


BIO-PROTOCOL ◽  
2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Sarah Tenney ◽  
Eleftheria Vogiatzoglou ◽  
Deena Chohan ◽  
Annette Vo ◽  
Thomas Hunt ◽  
...  

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Eric Francisco ◽  
Oleg Favorov ◽  
Anna Tommerdahl ◽  
Jameson Holden ◽  
Mark Tommerdahl

There have been numerous reports of neurological assessments of post-concussed athletes.  However, the majority of the methods commonly deployed are either qualitative assessments that are simply symptom based or are psycho-social questionnaires.  The information provided from those studies does not provide insight into the neural mechanisms impacted by concussion, and more importantly, does not contribute to a prognostic view of overall brain health that would facilitate or predict the recovery of the concussed individual. Cortical metrics are measures that were designed to probe brain function via the somatosensory system (i.e., with high fidelity tactile inputs) and have been demonstrated to be both objective, quantifiable and physiologically based.  The methods have also been recently reported to parallel findings in a neurophysiological animal model of brain injury (Challener et al, 2020) that support the concept that these metrics parallel alterations in specific neural mechanisms post-injury.  In this report, the battery of tactile based measures are reaction time (RT), reaction time variability (RTvar), sequential and simultaneous amplitude discrimination, temporal order judgement (TOJ) and duration discrimination (DD).  These methods  are administered with a computer mouse sized tactile stimulator (the Brain Gauge) that delivers sinusoidal stimuli to digits 2 and 3 with precision control of both amplitude and frequency. The results obtained during the first week of observation post-injury predict the recovery trajectory of the concussed individual.  Interestingly, some of the metrics of the individuals who take longer to recover from injury obtained during the first week outperform the metrics of individuals that recover quickly, and these findings parallel the findings from the animal model.


Sign in / Sign up

Export Citation Format

Share Document