acoustic characteristics
Recently Published Documents


TOTAL DOCUMENTS

1613
(FIVE YEARS 423)

H-INDEX

41
(FIVE YEARS 6)

2022 ◽  
Vol 3 (1) ◽  
pp. 67-83
Author(s):  
Ivana Mihaljinec ◽  
Erdal Eser

Divriği Great Mosque and Hospital as one of the World heritage monuments on UNESCO’s list was the subject of research. More precisely, the focus was on the architecture and the acoustic characteristics of the hospital built in 1228/1229 by Mengüjeck dynasty, a branch of Anatolian Seljuks. For the analysis purposes, a 3D model of the hospital was created, and the acoustic simulation was conducted. The results of the acoustic analysis show that the architectural characteristics of the hospital fulfill the acoustic standards for the good reception of the sound for the audience, and that it can be concluded that Divriği hospital venue supports the hypothesis of being suitable for the healing purposes. Hospital was designed to support the sound realization and to support the environmental soundscape in conjunction with the sounding makams, which supports the music therapy healing effect. It can be concluded that music therapy had acoustical support in the construction of Anatolian Seljuk hospitals, which have characteristics of concert halls and were built as acoustic (music) venues.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shoma Hattori ◽  
Shinji Nozue ◽  
Yoshiaki Ihara ◽  
Koji Takahashi

AbstractTo evaluate the expiratory sounds produced during swallowing recorded simultaneously with videofluorographic examination of swallowing (VF) using fast Fourier transform (FFT), and to examine the relationship between dysphagia and its acoustic characteristics. A total of 348 samples of expiratory sounds were collected from 61 patients with dysphagia whose expiratory sounds were recorded during VF. The VF results were evaluated by one dentist and categorized into three groups: safe group (SG), penetration group (PG), and aspiration group (AG). The duration and maximum amplitude of expiratory sounds produced were measured as the domain characteristics on the time waveform of these sounds and compared among the groups. Time window-length appropriate for FFT and acoustic discriminate values (AD values) of SG, PG, and AG were also investigated. The groups were analyzed using analysis of variance and Scheffé's multiple comparison method. The maximum amplitude of SG was significantly smaller than those of PG and AG. The mean duration in SG (2.05 s) was significantly longer than those in PG (0.84 s) and AG (0.96 s). The AD value in SG was significantly lower than those in PG and AG. AD value detects penetration or aspiration, and can be useful in screening for dysphagia.


2022 ◽  
Vol 12 (2) ◽  
pp. 550
Author(s):  
Yiheng Song ◽  
Ziying Wang ◽  
Jie Chen ◽  
Jinxiang Chen

Curved surfaces can give plates a unique aesthetic effect and physical advantages in acoustics and optics. Assembling such curved plates can greatly improve the image of buildings and enrich their functions. It is thus not surprising to notice that their wide applications in designed or completed buildings in China have become a trend. Thus, this study offers a comprehensive summary of the application progress of curved plates in the architectural field from three aspects: image expression, acoustic characteristics, and optical characteristics. On this basis, future directions are proposed. The main findings or suggestions are as follows: (1) climate harshness has increased recently, and the safety of structures and materials and the coupling effect of the two must be fully considered when designing the shapes of curved surface buildings; (2) research on the mechanism and numerical calculation of curved diffuser systems with different sizes and curvatures needs to be further developed; and (3) experimental studies of various and complex curved plates and different conditions to explore their optimal reflectivity, transmittance, absorptivity, and other optical properties will be an important development direction.


2022 ◽  
Vol 38 (1) ◽  
Author(s):  
Marwa Elsherbeny ◽  
Hemmat Baz ◽  
Omayma Afsah

Abstract Background Using different methodologies, several researchers have reported certain acoustical and physiological differences between fluent utterances of stutterers and normally fluent speakers. The aim of this study was to determine acoustic characteristics of voice and speech in Arabic-speaking stuttering children in comparison to normal children and correlate these characteristics with stuttering severity. A sample of 80 Arabic-speaking Egyptian children (including 40 typically developing children and 40 stuttering children) in the age range 5–8 years were subjected to acoustic analysis of voice and speech using the Praat software. Results The stuttering children showed significantly higher values of jitter and shimmer in prolonged /a/ vowel sample, as compared to the normal group. This may reflect the subtle differences in laryngeal functioning or in the complex interaction among the laryngeal, respiratory, and the vocal tract systems in stuttering children. Both jitter and shimmer of prolonged /a/ vowel demonstrated significant positive moderate correlation with stuttering severity as assessed by SSI3. F0 was significantly higher in females than in males, both in normal and stuttering children. Conclusions The present study revealed significant differences in the acoustic parameters of voice and speech between Arabic-speaking stuttering children and normal children. Some of these acoustic parameters were significantly correlated with stuttering severity. Acoustic analysis can be used as simple, quick, and cheap tool for assessment of stuttering in children and might be a valuable addition to the diagnostic set for assessment of stuttering severity.


2022 ◽  
pp. 1351010X2110688
Author(s):  
Alaa Algargoosh ◽  
Babak Soleimani ◽  
Sile O’Modhrain ◽  
Mojtaba Navvab

People’s interactions with the environment shape their experiences. Thus, understanding these interactions is critical to enhancing human well-being. Aural attributes play a significant role in shaping the perception of space in addition to visual attributes. It is well known that sounds evoke an emotional response, but less is known about how the acoustic characteristics of environments reinforce such an emotional impact. By adopting virtual reality as a platform for recreating 3D sounds and 360° visuals of built environments of worship spaces as case studies, this study aims to investigate the influence of the acoustic environment considering audiovisual congruency on enhancing the human experience through self-report and physiological response analysis. It also examines the role of cultural background in terms of familiarity with the acoustic environment. The convergent mixed-methods approach, merging both quantitative and qualitative analysis, provides a deep understanding of the role of the acoustic environment in enhancing the auditory experience. The results show that the acoustic environment and audiovisual congruency amplify the intensity of the emotional impact, and the amplification of the impact can vary depending on the acoustic environment of the building. They also reveal that familiarity with sound and acoustic characteristics can increase this impact.


Sign in / Sign up

Export Citation Format

Share Document