Performance of a high-work low aspect ratio turbine tested with a realistic inlet radial temperature profile

Author(s):  
R. STABE ◽  
W. WHITNEY ◽  
T. MOFFITT
Author(s):  
K. L. Lewis

In Part 1 of this paper, a repeating stage condition was shown to occur in two low aspect ratio turbines, after typically two stages. Both turbulent diffusion and convective mechanisms were responsible for spanwise transport. In this part, two scaling expressions are determined that account for the influence of these mechanisms in effecting spanwise transport. These are incorporated into a throughflow model using a diffusive term. The inclusion of spanwise transport allows the use of more realistic loss distributions by the designer as input to the throughflow model and therefore focuses attention on areas where losses are generated. In addition, modelling of spanwise transport is shown to be crucial in predicting the attenuation of a temperature profile through a turbine.


1994 ◽  
Vol 116 (2) ◽  
pp. 187-193 ◽  
Author(s):  
K. L. Lewis

In Part 1 of this paper, a repeating stage condition was shown to occur in two low aspect ratio turbines, typically after two stages. Both turbulent diffusion and convective mechanisms were responsible for spanwise transport. In this part, two scaling expressions are determined that account for the influence of these mechanisms in effecting spanwise transport. These are incorporated into a throughflow model using a diffusive term. The inclusion of spanwise transport allows the use of more realistic loss distributions by the designer as input to the throughflow model and therefore focuses attention on areas where losses are generated. In addition, modeling of spanwise transport is shown to be crucial in predicting the attenuation of a temperature profile through a turbine.


2012 ◽  
Vol 132 (7) ◽  
pp. 567-573
Author(s):  
Hitoshi Tanaka ◽  
Shota Omi ◽  
Jun Katsuma ◽  
Yurie Yamamoto ◽  
Masaki Uchida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document