Evaluating the Dynamic Loads from Wind Tunnel Turbulence on a Low Aspect Ratio Flat Plate

Author(s):  
Michael Sytsma ◽  
Lawrence Ukeiley
1986 ◽  
Vol 173 ◽  
pp. 55-71 ◽  
Author(s):  
P. Van Oossanen ◽  
P. N. Joubert

In this paper the authors present a numerical and experimental analysis of the winged keel originally developed for the International twelve-metre class yacht Australia II that won the America's Cup in 1983. After briefly explaining why this keel was evolved in 1981, some basic considerations are presented relating keel performance to various design parameters. The results of numerical flow analyses and wind-tunnel measurements on a model of a winged keel are then presented and compared. The differences between the performance with and without winglets fitted to the keel are discussed. The fitting of winglets appreciably enhances the performance of a low-aspect-ratio lifting surface such as the keel of a twelve-metre yacht.


Author(s):  
Changfu Cheng ◽  
Tianxiang Hu ◽  
Peiqing Liu ◽  
Zhaosheng Zhang ◽  
Qiulin Qu ◽  
...  

AIAA Journal ◽  
1967 ◽  
Vol 5 (9) ◽  
pp. 1715-1717 ◽  
Author(s):  
EIICHI NAKAI ◽  
TOSHIRO TAKAGI ◽  
KOJI ISOGAI

2007 ◽  
Vol 339 ◽  
pp. 377-381
Author(s):  
Xiao Quan Zhang ◽  
L. Tian

Micro Air Vehicles (MAVs) are catching more and more attentions for their broad application in civilian and military fields. Since the theories on the aerodynamics of low Reynolds number are not maturely presented and the wind-tunnel experiments cost long periods and great expenses. The numerical simulation based on computational fluid dynamics (CFD) is a good method to choose. Through three-dimensional simulation of the wings, the aerodynamic characteristics of the flows around MAVs can be easily obtained. The tip vortices produced around low-Reynolds-number and low-aspect-ratio wings can increase the lift and stall angles. The result of numerical simulation can be used as references of theory analysis and wind-tunnel experiments.


Aviation ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 104-113
Author(s):  
Ahmed Aboelezz ◽  
Yunes Elqudsi ◽  
Mostafa Hassanalian ◽  
Ahmed Desoki

The increase in the number of Unmanned Aerial Vehicles (UAVs) and Micro Air Vehicles (MAVs), which are used in a variety of applications has led to a surge in low Reynolds number aerodynamics research. Flow around fixedwing MAVs has an unusual behavior due to its low aspect ratio and operates at low Reynolds number, which demanded to upgrade the used wind tunnel for this study. This upgrade enables measuring the small aerodynamics forces and moment of fixed-wing MAVs. The wind tunnel used in this work is upgraded with a state of art data acquisition system to deal with the different sensors signals in the wind tunnel. For accurate measurements, the sting balance, angle sensor, and airspeed sensor are calibrated. For validation purposes, an experiment is made on a low aspect ratio flat plate wing at low Reynolds number, and the measured data are corrected and compared with published results. The procedure presented in this paper for the first time gave a detailed and complete guide for upgrading and calibrating old wind tunnel, all the required corrections to correct the measured data was presented, the turbulence level correction new technique presented in this paper could be used to estimate the flow turbulence effect on the measured data and correct the measured data against published data.


1991 ◽  
Vol 158 (1) ◽  
pp. 117-132
Author(s):  
LISBETH FRANCIS

Using a wind tunnel built over a shallow pool and methods devised for measuring the performance of yacht sails, I describe aerodynamic performance in situ for the sailor-by-the-wind, Velella velella. By contrast with designers of the modern yacht mainsail, natural selection has apparently favored stability and seaworthiness over performance to windward. The Velella sail is a low aspect ratio airfoil with an unusually flat polar plot. Primarily a drag-based locomotory structure, this thin, leaf-like sail generates maximum force when oriented at attack angles between 50° and 90°. In the wind tunnel, free-sailing animals spontaneously assumed stable orientations at attack angles ranging from 28° to 87° and sailed with their hulls approximately broadside to the apparent flow of oncoming water. At these angles, aerodynamic force on the sail is asymmetrical, with the center of pressure upwind of the sail midline. Since aerodynamic force on the sail is balanced at equilibrium by hydrodynamic force on the hull, this orientation must be caused by asymmetrical forces acting on surface and underwater parts as the wind drags the animal along the surface of the water.


Sign in / Sign up

Export Citation Format

Share Document