A theory for the core of a three-dimensional leading-edge vortex

Author(s):  
J. LUCKRING
2018 ◽  
Vol 5 (7) ◽  
pp. 172197 ◽  
Author(s):  
Shantanu S. Bhat ◽  
Jisheng Zhao ◽  
John Sheridan ◽  
Kerry Hourigan ◽  
Mark C. Thompson

Stable attachment of a leading-edge vortex (LEV) plays a key role in generating the high lift on rotating wings with a central body. The central body size can affect the LEV structure broadly in two ways. First, an overall change in the size changes the Reynolds number, which is known to have an influence on the LEV structure. Second, it may affect the Coriolis acceleration acting across the wing, depending on the wing-offset from the axis of rotation. To investigate this, the effects of Reynolds number and the wing-offset are independently studied for a rotating wing. The three-dimensional LEV structure is mapped using a scanning particle image velocimetry technique. The rapid acquisition of images and their correlation are carefully validated. The results presented in this paper show that the LEV structure changes mainly with the Reynolds number. The LEV-split is found to be only minimally affected by changing the central body radius in the range of small offsets, which interestingly includes the range for most insects. However, beyond this small offset range, the LEV-split is found to change dramatically.


AIAA Journal ◽  
1976 ◽  
Vol 14 (4) ◽  
pp. 519-525 ◽  
Author(s):  
James A. Weber ◽  
Guenter W. Brune ◽  
Forrester T. Johnson ◽  
Paul Lu ◽  
Paul E. Rubbert

Author(s):  
Ye-Bonne Koyama Maldonado ◽  
Gregory Delattre ◽  
Cedric Illoul ◽  
Clement Dejeu ◽  
Laurent Jacquin

Leading-edge vortex flows are often present on propeller blades at take-off, however, their characteristics and aerodynamic impact are still not fully understood. An experimental investigation using Time Resolved Particle Image Velocimetry (TR-PIV) has been performed on a model blade in order to classify this flow with respect to both delta wing leading-edge vortices and the low Reynolds number studies regarding leading-edge vortices on rotating blades. A numerical calculation of the experimental setup has been performed in order to assess usual numerical methods for propeller performance prediction against TR-PIV results. Similar characteristics were found with non slender delta wing vortices at low incidence, which hints that the leading-edge vortex flow may generate vortex lift. The influence of rotation on the characteristics of the leading-edge vortex is compared to that of the pressure gradient caused by the circulation distribution. A discussion on the quality of the PIV reconstruction for close-wall structures is provided.


1997 ◽  
Vol 352 (1351) ◽  
pp. 329-340 ◽  
Author(s):  
Coen van den Berg ◽  
Charles P. Ellington

Recent flow visualisation experiments with the hawkmoth, Manduca sexta , revealed small but clear leading–edge vortex and a pronounced three–dimensional flow. Details of this flow pattern were studied with a scaled–up, robotic insect (‘the flapper’) that accurately mimicked the wing movements of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing confirmed the existence of a small, strong and stable leading–edge vortex, increasing in size from wingbase to wingtip. Between 25 and 75 % of the wing length, its diameter increased approximately from 10 to 50 % of the wing chord. The leading–edge vortex had a strong axial flow veolocity, which stabilized it and reduced its diamater. The vortex separated from the wing at approximately 75 % of the wing length and thus fed vorticity into a large, tangled tip vortex. If the circulation of the leading–edge vortex were fully used for lift generation, it could support up to two–thirds of the hawkmoth's weight during the downstroke. The growth of this circulation with time and spanwise position clearly identify dynamic stall as the unsteady aerodynamic mechanism responsible for high lift production by hovering hawkmoths and possibly also by many other insect species.


2011 ◽  
Vol 691 ◽  
pp. 518-545 ◽  
Author(s):  
T. O. Yilmaz ◽  
D. Rockwell

AbstractThe flow structure on low-aspect-ratio wings arising from pitch-up motion is addressed via a technique of particle image velocimetry. The objectives are to: determine the onset and evolution of the three-dimensional leading-edge vortex; provide complementary interpretations of the vortex structure in terms of streamlines, projections of spanwise and surface-normal vorticity, and surfaces of constant values of the second invariant of the velocity gradient tensor (iso-$Q$ surfaces); and to characterize the effect of wing planform (rectangular versus elliptical) on this vortex structure. The pitch-up motion of the wing (plate) is from 0 to $4{5}^{\ensuremath{\circ} } $ over a time span corresponding to four convective time scales, and the Reynolds number based on chord is 10 000. Volumes of constant magnitude of the second invariant of the velocity gradient tensor are interpreted in conjunction with three-dimensional streamline patterns and vorticity projections in orthogonal directions. The wing motion gives rise to ordered vortical structures along its wing surface. In contrast to development of the classical two-dimensional leading-edge vortex, the flow pattern evolves to a strongly three-dimensional form at high angle of attack. The state of the vortex system, after attainment of maximum angle of attack, has a similar form for extreme configurations of wing planform. Near the plane of symmetry, a large-scale region of predominantly spanwise vorticity dominates. Away from the plane of symmetry, the flow is dominated by two extensive regions of surface-normal vorticity, i.e. swirl patterns parallel to the wing surface. This similar state of the vortex structure is, however, preceded by different sequences of events that depend on the magnitude of the spanwise velocity within the developing vortex from the leading edge of the wing. Spanwise velocity of the order of one-half the free stream velocity, which is oriented towards the plane of symmetry of the wing, results in regions of surface-normal vorticity. In contrast, if negligible spanwise velocity occurs within the developing leading-edge vortex, onset of the regions of surface-normal vorticity occurs near the tips of the wing. These extremes of large and insignificant spanwise velocity within the leading-edge vortex are induced respectively on rectangular and elliptical planforms.


2016 ◽  
Vol 788 ◽  
pp. 407-443 ◽  
Author(s):  
R. G. Bottom II ◽  
I. Borazjani ◽  
E. L. Blevins ◽  
G. V. Lauder

Stingrays, in contrast with many other aquatic animals, have flattened disk-shaped bodies with expanded pectoral ‘wings’, which are used for locomotion in water. To discover the key features of stingray locomotion, large-eddy simulations of a self-propelled stingray, modelled closely after the freshwater stingray, Potamotrygon orbignyi, are performed. The stingray’s body motion was prescribed based on three-dimensional experimental measurement of wing and body kinematics in live stingrays at two different swimming speeds of 1.5 and $2.5L~\text{s}^{-1}$ ($L$ is the disk length of the stingray). The swimming speeds predicted by the self-propelled simulations were within 12 % of the nominal swimming speeds in the experiments. It was found that the fast-swimming stingray (Reynolds number $Re=23\,000$ and Strouhal number $St=0.27$) is approximately 12 % more efficient than the slow-swimming one ($Re=13\,500$, $St=0.34$). This is related to the wake of the fast- and slow-swimming stingrays, which was visualized along with the pressure on the stingray’s body. A horseshoe vortex was discovered to be present at the anterior margin of the stingray, creating a low-pressure region that enhances thrust for both fast and slow swimming speeds. Furthermore, it was found that a leading-edge vortex (LEV) on the pectoral disk of swimming stingrays generates a low-pressure region in the fast-swimming stingray, whereas the low- and high-pressure regions in the slow-swimming one are in the back half of the wing and not close to any vortical structures. The undulatory motion creates thrust by accelerating the adjacent fluid (the added-mass mechanism), which is maximized in the back of the wing because of higher undulations and velocities in the back. However, the thrust enhancement by the LEV occurs in the front portion of the wing. By computing the forces on the front half and the back half of the wing, it was found that the contribution of the back half of the wing to thrust in a slow-swimming stingray is several-fold higher than in the fast-swimming one. This indicates that the LEV enhances thrust in fast-swimming stingrays and improves the efficiency of swimming.


Sign in / Sign up

Export Citation Format

Share Document