On the mechanism of fouling and particulate deposition on transfer surfaces

1987 ◽  
Author(s):  
A. GUPTA ◽  
D. LILLEY
Author(s):  
Weiguo Ai ◽  
Thomas H. Fletcher

Numerical computations were conducted to simulate flyash deposition experiments on gas turbine disk samples with internal impingement and film cooling using a CFD code (FLUENT). The standard k-ω turbulence model and RANS were employed to compute the flow field and heat transfer. The boundary conditions were specified to be in agreement with the conditions measured in experiments performed in the BYU Turbine Accelerated Deposition Facility (TADF). A Lagrangian particle method was utilized to predict the ash particulate deposition. User-defined subroutines were linked with FLUENT to build the deposition model. The model includes particle sticking/rebounding and particle detachment, which are applied to the interaction of particles with the impinged wall surface to describe the particle behavior. Conjugate heat transfer calculations were performed to determine the temperature distribution and heat transfer coefficient in the region close to the film-cooling hole and in the regions further downstream of a row of film-cooling holes. Computational and experimental results were compared to understand the effect of film hole spacing, hole size and TBC on surface heat transfer. Calculated capture efficiencies compare well with experimental results.


1984 ◽  
pp. 249-285 ◽  
Author(s):  
V. Prodi ◽  
A. Mularoni

AIChE Journal ◽  
1983 ◽  
Vol 29 (3) ◽  
pp. 498-505 ◽  
Author(s):  
Kwan H. Im ◽  
Paul M. Chung

Sign in / Sign up

Export Citation Format

Share Document