Effects of numerical dissipation on finite-volume solutions of compressible flow problems

Author(s):  
DAVID CAUGHEY ◽  
ELI TURKEL
2016 ◽  
Vol 26 (5) ◽  
pp. 1310-1327 ◽  
Author(s):  
Ghislain Tchuen ◽  
Pascalin Tiam Kapen ◽  
Yves Burtschell

Purpose – The purpose of this paper is to present a new hybrid Euler flux fonction for use in a finite-volume Euler/Navier-Stokes code and adapted to compressible flow problems. Design/methodology/approach – The proposed scheme, called AUFSRR can be devised by combining the AUFS solver and the Roe solver, based on a rotated Riemann solver approach (Sun and Takayama, 2003; Ren, 2003). The upwind direction is determined by the velocity-difference vector and idea is to apply the AUFS solver in the direction normal to shocks to suppress carbuncle and the Roe solver across shear layers to avoid an excessive amount of dissipation. The resulting flux functions can be implemented in a very simple manner, in the form of the Roe solver with modified wave speeds, so that converting an existing AUFS flux code into the new fluxes is an extremely simple task. Findings – The proposed flux functions require about 18 per cent more CPU time than the Roe flux. Accuracy, efficiency and other essential features of AUFSRR scheme are evaluated by analyzing shock propagation behaviours for both the steady and unsteady compressible flows. This is demonstrated by several test cases (1D and 2D) with standard finite-volume Euler code, by comparing results with existing methods. Practical implications – The hybrid Euler flux function is used in a finite-volume Euler/Navier-Stokes code and adapted to compressible flow problems. Originality/value – The AUFSRR scheme is devised by combining the AUFS solver and the Roe solver, based on a rotated Riemann solver approach.


Author(s):  
Alexis Picard ◽  
Nicolas Lelong ◽  
Olivier Jamond ◽  
Vincent Faucher ◽  
Christian Tenaud

2009 ◽  
Vol 137 (4) ◽  
pp. 1422-1437 ◽  
Author(s):  
Jin-Luen Lee ◽  
Alexander E. MacDonald

Abstract An icosahedral-hexagonal shallow-water model (SWM) on the sphere is formulated on a local Cartesian coordinate based on the general stereographic projection plane. It is discretized with the third-order Adam–Bashforth time-differencing scheme and the second-order finite-volume operators for spatial derivative terms. The finite-volume operators are applied to the model variables defined on the nonstaggered grid with the edge variables interpolated using polynomial interpolation. The projected local coordinate reduces the solution space from the three-dimensional, curved, spherical surface to the two-dimensional plane and thus reduces the number of complete sets of basis functions in the Vandermonde matrix, which is the essential component of the interpolation. The use of a local Cartesian coordinate also greatly simplifies the mathematic formulation of the finite-volume operators and leads to the finite-volume integration along straight lines on the plane, rather than along curved lines on the spherical surface. The SWM is evaluated with the standard test cases of Williamson et al. Numerical results show that the icosahedral SWM is free from Pole problems. The SWM is a second-order finite-volume model as shown by the truncation error convergence test. The lee-wave numerical solutions are compared and found to be very similar to the solutions shown in other SWMs. The SWM is stably integrated for several weeks without numerical dissipation using the wavenumber 4 Rossby–Haurwitz solution as an initial condition. It is also shown that the icosahedral SWM achieves mass conservation within round-off errors as one would expect from a finite-volume model.


2007 ◽  
Vol 04 (02) ◽  
pp. 299-333 ◽  
Author(s):  
D. ZEIDAN ◽  
A. SLAOUTI ◽  
E. ROMENSKI ◽  
E. F. TORO

We outline an approximate solution for the numerical simulation of two-phase fluid flows with a relative velocity between the two phases. A unified two-phase flow model is proposed for the description of the gas–liquid processes which leads to a system of hyperbolic differential equations in a conservative form. A numerical algorithm based on a splitting approach for the numerical solution of the model is proposed. The associated Riemann problem is solved numerically using Godunov methods of centered-type. Results show the importance of the Riemann problem and of centered schemes in the solution of the two-phase flow problems. In particular, it is demonstrated that the Slope Limiter Centered (SLIC) scheme gives a low numerical dissipation at the contact discontinuities, which makes it suitable for simulations of practical two-phase flow processes.


Author(s):  
Sérgio Souza Bento ◽  
Leonardo Muniz de Lima ◽  
Ramoni Zancanela Sedano ◽  
Lucia Catabriga ◽  
Isaac P. Santos

Sign in / Sign up

Export Citation Format

Share Document