Similarity solution for a power-law injection distribution in a flat-plate thermal boundary layer

1990 ◽  
Author(s):  
ROBERT GRAY
1990 ◽  
Vol 112 (1) ◽  
pp. 157-162 ◽  
Author(s):  
A. Nakayama ◽  
T. Kokudai ◽  
H. Koyama

The local similarity solution procedure was successfully adopted to investigate non-Darcian flow and heat transfer through a boundary layer developed over a horizontal flat plate in a highly porous medium. The full boundary layer equations, which consider the effects of convective inertia, solid boundary, and porous inertia in addition to the Darcy flow resistance, were solved using novel transformed variables deduced from a scale analysis. The results from this local similarity solution are found to be in good agreement with those obtained from a finite difference method. The effects of the convective inertia term, boundary viscous term, and porous inertia term on the velocity and temperature fields were examined in detail. Furthermore, useful asymptotic expressions for the local Nusselt number were derived in consideration of possible physical limiting conditions.


1975 ◽  
Vol 97 (3) ◽  
pp. 482-484 ◽  
Author(s):  
C. B. Watkins

Numerical solutions are described for the unsteady thermal boundary layer in incompressible laminar flow over a semi-infinite flat plate set impulsively into motion, with the simultaneous imposition of a constant temperature difference between the plate and the fluid. Results are presented for several Prandtl numbers.


Sign in / Sign up

Export Citation Format

Share Document