Numerical study of thermal boundary layer on a continuous moving surface in power law fluids

2007 ◽  
Vol 16 (3) ◽  
pp. 243-247 ◽  
Author(s):  
Hao Zhang ◽  
Xinxin Zhang ◽  
Liancun Zheng
2012 ◽  
Vol 134 (10) ◽  
Author(s):  
J. Abolfazli Esfahani ◽  
B. Bagherian

The transformation group theoretic approach is applied to perform an analysis of unsteady free convection flow over a vertical flat plate immersed in a power law fluid. The thermal boundary layer induced within a vertical semi-infinite layer of Boussinseq fluid. The system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions via two-parameter group theory. The obtained ordinary differential equations are solved numerically for velocity and temperature using the fourth order Runge-Kutta and shooting method. The effect of Prandtl number and viscosity index (n) on the thermal boundary-layer, velocity boundary-layer, local Nusselt number, and local skin-friction were studied.


2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1323-1334 ◽  
Author(s):  
Alireza Bahmani ◽  
Hadi Kargarsharifabad

The MHD free convection flow of non-Newtonian power-law fluids over a horizontal plate subjected to a constant heat flux is studied. The results are presented for various values of the three influential parameters, i. e. the generalized Hart?mann number, the generalized Prandtl number, and the non-Newtonian power-law viscosity index. Increasing the Hartmann number increases the thermal boundary-layer thickness and the surface temperature and consequently decreases the wall skin friction and Nusselt number. A lower generalized Prandtl number results in a larger skin friction coefficient and higher wall temperature as well as thicker thermal boundary-layer. The viscosity index is predicted to influence the flow conditions depending on the value of generalized Hartmann number. At high generalized Prandtl number numbers, by decreasing non-Newtonian power-law index, the wall skin friction, temperature scale, and thermal boundary-layer thickness are increased and the Nusselt number is decreased, while the opposite trend is observed for low generalized Prandtl number. A general correlation for the Nusselt number is derived using the numerical results


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
J. Prakash ◽  
S. Gouse Mohiddin ◽  
S. Vijaya Kumar Varma

A numerical study of buoyancy-driven unsteady natural convection boundary layer flow past a vertical cone embedded in a non-Darcian isotropic porous regime with transverse magnetic field applied normal to the surface is considered. The heat and mass flux at the surface of the cone is modeled as a power law according to qwx=xm and qw*(x)=xm, respectively, where x denotes the coordinate along the slant face of the cone. Both Darcian drag and Forchheimer quadratic porous impedance are incorporated into the two-dimensional viscous flow model. The transient boundary layer equations are then nondimensionalized and solved by the Crank-Nicolson implicit difference method. The velocity, temperature, and concentration fields have been studied for the effect of Grashof number, Darcy number, Forchheimer number, Prandtl number, surface heat flux power-law exponent (m), surface mass flux power-law exponent (n), Schmidt number, buoyancy ratio parameter, and semivertical angle of the cone. Present results for selected variables for the purely fluid regime are compared with the published results and are found to be in excellent agreement. The local skin friction, Nusselt number, and Sherwood number are also analyzed graphically. The study finds important applications in geophysical heat transfer, industrial manufacturing processes, and hybrid solar energy systems.


2014 ◽  
Vol 31 (1) ◽  
pp. 79-90
Author(s):  
K. Ramadan

ABSTRACTImpulsively started external convection at microscale level is studied numerically in both planar and axisymmetric geometries. Using similarity transformation, the resulting coupled partial and non-linear ordinary differential equations are simultaneously solved by finite differences together with a well established ordinary differential equation solver, over a range of problem parameters. Rarefaction effects within the slip flow regime on the thermal boundary layer response, heat transfer rate and transition time when system experiences sudden changes in surface temperature are analyzed, and a comparison between sudden surface cooling and heating is presented. The results show that the thermal boundary layer thickness, heat transfer rate and the transition time is considerably influenced by the degree of rarefaction. The transition time tends to be less sensitive with increasing rarefaction. The velocity slip and temperature jump factors are found to have opposite effects on the transition time and the heat transfer rate, with the velocity slip factor having the most profound influence on these parameters.


Sign in / Sign up

Export Citation Format

Share Document