power law fluids
Recently Published Documents


TOTAL DOCUMENTS

976
(FIVE YEARS 142)

H-INDEX

45
(FIVE YEARS 3)

Author(s):  
Minki Lee ◽  
Sajjan Parajuli ◽  
Hyeokgyun Moon ◽  
Ryungeun Song ◽  
Saebom Lee ◽  
...  

Abstract The rheological properties of silver inks are analyzed, and the printing results are presented based on the inks and roll-to-roll printing speed. The shear viscosity, shear modulus, and extensional viscosity of the inks are measured using rotational and extensional rheometers. The inks exhibit the shear thinning power law fluids because the concentration of dispersed nanoparticles in the solvent is sufficiently low, which minimizes elasticity. After the inks are printed on a flexible substrate through gravure printing, the optical images, surface profiles, and electric resistances of the printed pattern are obtained. The width and height of the printed pattern change depending on the ink viscosity, whereas the printing speed does not significantly affect the widening. The drag-out tail is reduced at high ink viscosities and fast printing speeds, thereby improving the printed pattern quality in the roll-to-roll process. Based on the results obtained, we suggest ink and printing conditions that result in high printing quality for complicated printings, such as overlay printing registration accuracy, which imposes pattern widening and drag-out tails in printed patterns.


2021 ◽  
Vol 39 (5) ◽  
pp. 1405-1416
Author(s):  
Hamza Daghab ◽  
Mourad Kaddiri ◽  
Said Raghay ◽  
Ismail Arroub ◽  
Mohamed Lamsaadi ◽  
...  

In this paper, numerical study on natural convection heat transfer for confined thermo-dependent power-law fluids is conducted. The geometry of interest is a fluid-filled square enclosure where a uniform flux heating element embedded on its lower wall is cooled from the vertical walls while the remaining parts of the cavity are insulated, without slipping conditions at all the solid boundaries. The governing partial differential equations written in terms of non-dimensional velocities, pressure and temperature formulation with the corresponding boundary conditions are discretized using a finite volume method in a staggered grid system. Coupled equations of conservation are solved through iterative Semi Implicit Method for Pressure Linked Equation (SIMPLE) algorithm. The effects of pertinent parameters, which are Rayleigh number (103 ≤ Ra ≤ 106), power-law index (0.6 ≤ n ≤ 1.4), Pearson number (0 ≤ m ≤ 20) and length of the heat source (0.2 ≤ W ≤ 0.8) on the cooling performance are investigated. The results indicate that the cooling performance of the enclosure is improved with increasing Pearson and Rayleigh numbers as well as with decreasing power-law index and heat source length.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 384
Author(s):  
Ângela M. Ribau ◽  
Nelson D. Gonçalves ◽  
Luís L. Ferrás ◽  
Alexandre M. Afonso

Numerical simulations of fluid flows can produce a huge amount of data and inadvertently important flow structures can be ignored, if a thorough analysis is not performed. The identification of these flow structures, mainly in transient situations, is a complex task, since such structures change in time and can move along the domain. With the decomposition of the entire data set into smaller sets, important structures present in the main flow and structures with periodic behaviour, like vortices, can be identified. Therefore, through the analysis of the frequency of each of these components and using a smaller number of components, we show that the Proper Orthogonal Decomposition can be used not only to reduce the amount of significant data, but also to obtain a better and global understanding of the flow (through the analysis of specific modes). In this work, the von Kármán vortex street is decomposed into a generator base and analysed through the Proper Orthogonal Decomposition for the 2D flow around a cylinder and the 2D flow around two cylinders with different radii. We consider a Newtonian fluid and two non-Newtonian power-law fluids, with n=0.7 and n=1.3. Grouping specific modes, a reconstruction is made, allowing the identification of complex structures that otherwise would be impossible to identify using simple post-processing of the fluid flow.


Sign in / Sign up

Export Citation Format

Share Document