Implicit multigrid algorithm for the Navier-Stokes equations

Author(s):  
T. TYSINGER ◽  
D. CAUGHEY
Author(s):  
Aaron F. Shinn ◽  
S. P. Vanka

A semi-implicit pressure based multigrid algorithm for solving the incompressible Navier-Stokes equations was implemented on a Graphics Processing Unit (GPU) using CUDA (Compute Unified Device Architecture). The multigrid method employed was the Full Approximation Scheme (FAS), which is used for solving nonlinear equations. This algorithm is applied to the 2D driven cavity problem and compared to the CPU version of the code (written in Fortran) to assess computational speed-up.


Author(s):  
Jianjun Liu

This paper describes the numerical simulation of the asymmetric exhaust flows by using a 3D viscous flow solver incorporating an actuator disc blade row model. The three dimensional Reynolds-Averaged Navier-Stokes equations are solved by using the TVD Lax-Wendroff scheme. The convergence to a steady state is speeded up by using the V-cycle multigrid algorithm. Turbulence eddy viscosity is estimated by the Baldwin-Lomax model. Multiblock method is applied to cope with the complicated physical domains. Actuator disc model is used to represent a turbine blade row and to achieve the required flow turning and entropy rise across the blade row. The solution procedure and the actuator disc boundary conditions are described. The stream traces in various sections of the exhaust hood are presented to demonstrate the complicity of the flow patterns existing in the exhaust hood.


2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Krish S. L. Hook ◽  
Sergii Veremieiev

AbstractAn efficient time-adaptive multigrid algorithm is used to solve a range of normal and oblique droplet impacts on dry surfaces and liquid films using the Depth-Averaged Form (DAF) method of the governing unsteady Navier–Stokes equations. The dynamics of a moving three-phase contact line on dry surfaces is predicted by a precursor film model. The method is validated against a variety of experimental results for droplet impacts, looking at factors such as crown height and diameter, spreading diameter and splashing for a range of Weber, Reynolds and Froude numbers along with liquid film thicknesses and impact angles. It is found that, while being a computationally inexpensive methodology, the DAF method produces accurate predictions of the crown and spreading diameters as well as conditions for splash, however, underpredicts the crown height as the vertical inertia is not included in the model.


Sign in / Sign up

Export Citation Format

Share Document