exhaust hood
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 30)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
pp. 103891
Author(s):  
Yanli Song ◽  
Xin Chen ◽  
Zhao Zhang ◽  
Shi Cao ◽  
Tao Du ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Tommaso Diurno ◽  
Tommaso Fondelli ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Leonardo Nettis ◽  
...  

2021 ◽  
Author(s):  
Tommaso Diurno ◽  
Stella Grazia Tomasello ◽  
Tommaso Fondelli ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
...  

Abstract Nowadays, the ever-increasing world electricity generation by renewable energy sources has brought about changes in conventional power plants, especially in those ones where large steam turbines work, which were widely used to meet the world’s energy needs by operating mostly at fixed conditions. Now, instead, they have to be capable to operate with greater flexibility, including rapid load changes and quick starts as well, in order to make the most of the renewable resources while guaranteeing the coverage of any shortcomings of the latter with traditional fossil fuel systems. Such service conditions are particularly challenging for the exhaust hoods, which have a great influence on the overall turbine performance, especially at off-design conditions. In fact, the complex and high rotational 3D flow generated within the diffuser and the exhaust hood outer casing can cause an increase in aerodynamic losses along with the detriment of the hood recovery performance. For these reasons, an optimized design and adequate prediction of the exhaust hood performance under all the machine operating conditions is mandatory. Since it has been widely proven that the exhaust hood flow strongly interacts with the turbine rear stage, the necessity to model this as well into a CFD modeling becomes crucial, requiring a remarkable computational effort, especially for full transient simulations. Even if adopting simplified approaches to model the last stage and exhaust hood interfaces, such as the so-called Frozen Rotor and the Mixing Plane ones, helps to keep the computational cost low, it can be not for an exhaust hood optimization process, which requires a significant number of CFD simulations to identify the most performing geometry configuration. For these reasons, a simplified model of the exhaust hood must be adopted to analyse all the possible design variants within a feasible time. The purpose of this work is to present a strategy for the exhaust hood design based on the definition of a simplified CFD model. A parametric model has been developed as a function of key geometrical parameters of both the exhaust hood and the diffuser, taking into account the strong fluid-dynamic coupling between these components. A periodic approximation has been introduced to model the exhaust hood domain, thus allowing to augment the number of the geometrical parameters of the DOE, while keeping the computational effort low. A response surface has been achieved as a function of the key geometrical parameters, therefore an optimization method has allowed identifying the best performing configuration. A 3D model of the optimized periodic geometry has been then generated to assess the effectiveness of the procedure here presented. Finally, the presented procedure has been applied in several off-design operating conditions, in order to find out an optimal geometry for each operating point, evaluating how much they differ from that one got for the design point.


2021 ◽  
Author(s):  
Christoph Kuestner ◽  
Joerg R. Seume

Abstract Exhaust hoods with an integrated axial-radial diffuser use the kinetic energy downstream of a turbine for static pressure recovery. This is especially useful in applications with limited axial space behind the turbine. So far, such exhaust hoods have been used almost exclusively in larger turbomachinery such as maritime turbochargers and steam turbines, where an axial turbine is typically installed. In combination with an axial turbine, an exhaust hood can result in a very powerful and space-efficient turbine design, especially under highly pulsating inflow conditions. Both are important requirements for automotive turbochargers. Therefore, the application of such an exhaust hood in a small automotive turbocharger is investigated in this paper; this turbocharger also uses an axial turbine. In the first step, a preliminary design is developed, based on a design approach for steam turbine exhaust hoods. The resulting design is examined with a 3D CFD model to determine efficiency and turbine performance. Subsequently, the design is improved by modifying the exhaust hood geometry such as to further improve the overall efficiency of the turbine. Finally, the CFD evaluation for the operating point investigated reveals an increased power output and a higher overall turbine efficiency compared to the initial design. A resulting design guideline for exhaust hoods with an integrated axial-radial diffuser is included.


2021 ◽  
Vol 190 ◽  
pp. 107572
Author(s):  
K.I. Logachev ◽  
A.M. Ziganshin ◽  
E.N. Popov ◽  
O.A. Averkova ◽  
O.S. Kryukova ◽  
...  

2021 ◽  
Vol 33 ◽  
pp. 101652 ◽  
Author(s):  
Jing Zhang ◽  
Jian Wang ◽  
Jun Gao ◽  
Mengxiao Xie ◽  
Changsheng Cao ◽  
...  

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Tommaso Diurno ◽  
Tommaso Fondelli ◽  
Leonardo Nettis ◽  
Nicola Maceli ◽  
Lorenzo Arcangeli ◽  
...  

Abstract Nowadays, the rising interest in using renewable energy for thermal power generation has led to radical changes in steam turbine design practice and operability. Modern steam turbines are required to operate with greater flexibility due to rapid load changes, fast start-up, and frequent shutdowns. This has given rise to great challenges to the exhaust hood system design, which has a great influence on the overall turbine performance converting the kinetic energy leaving the last stage of low-pressure turbine into static pressure. The radial hoods are characterized by a complex aerodynamic behavior since the flow turns by 90 deg in a very short distance and this generates a highly rotational flow structure within the diffuser and exhaust hood outer casing, moreover, the adverse pressure gradient can promote the flow separation drastically reducing the hood recovery performance. For these reasons, it is fundamental to design the exhaust system in order to ensure a good pressure recovery under all the machine operating conditions. This paper presents a design of experiment (DOE) analysis on a low-pressure steam turbine exhaust hood through computational fluid dynamics (CFD) simulations. A parametric model of an axial-radial exhaust hood was developed, and a sensitivity of exhaust hood performance as a function of key geometrical parameters was carried out, with the aim of optimizing the pressure recovery coefficient and minimizing the overall dimensions of the exhaust casing. Since hood performance strongly depends on a proper coupling with the turbine rear stage, such a stage was modeled using the so-called mixing-plane approach to couple both stator–rotor and rotor-diffuser interfaces. A detailed analysis of the flow field in the exhaust hood in the different configurations was performed, detecting the swirling structures responsible for the energy dissipation in each simulation, as well as correlating the flow field with the pressure recovery coefficient.


2020 ◽  
Vol 225 ◽  
pp. 110316
Author(s):  
Jing Zhang ◽  
Jian Wang ◽  
Jun Gao ◽  
Changsheng Cao ◽  
Lipeng Lv ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document