Multidisciplinary Design Optimization of a supersonic transport aircraft using a hybrid genetic/gradient-based algorithm

Author(s):  
Dolf Bos
2003 ◽  
Vol 47 (01) ◽  
pp. 1-12 ◽  
Author(s):  
Daniele Peri ◽  
Emilio F. Campana

Whereas shape optimal design has received considerable attention in many industrial contexts, the application of automatic optimization procedures to hydrodynamic ship design has not yet reached the same maturity. Nevertheless, numerical tools, combining together modern computational fluid dynamics and optimization methods, can aid in the ship design, enhancing the operational performances and reducing development and construction costs. This paper represents an attempt of applying a multidisciplinary design optimization (MDO) procedure to the enhancement of the performances of an existing ship. At the present stage the work involves modeling, development, and implementation of algorithms only for the hydrodynamic optimization. For a naval surface combatant, the David Taylor Model Basin (DTMB) model ship 5415, a three-objective functions optimization for a two-discipline design problem is devised and solved in the framework of the MDO approach. A simple decision maker is used to order the Pareto optimal solutions, and a gradient-based refinement is performed on the selected design.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Po Ting Lin ◽  
Hae Chang Gea

Recently, solving the complex design optimization problems with design uncertainties has become an important but very challenging task in the communities of reliability-based design optimization (RBDO) and multidisciplinary design optimization (MDO). The MDO algorithms decompose the complex design problem into the hierarchical or nonhierarchical optimization structure and distribute the workloads to each discipline (or subproblem) in the decomposed structure. The coordination of the local responses is crucial for the success of finding the optimal design point. The problem complexity increases dramatically when the existence of the design uncertainties is not negligible. The RBDO algorithms perform the reliability analyses to evaluate the probabilities that the random variables violate the constraints. However, the required reliability analyses build up the degree of complexity. In this paper, the gradient-based transformation method (GTM) is utilized to reduce the complexity of the MDO problems by transforming the design space to multiple single-variate monotonic coordinates along the directions of the constraint gradients. The subsystem responses are found using the monotonicity principles (MP) and then coordinated for the new design points based on two general principles. To consider the design uncertainties, the probabilistic gradient-based transformation method (PGTM) is proposed to adapt the first-order probabilistic constraints from three different RBDO algorithms, including the chance constrained programming (CCP), reliability index approach (RIA), and performance measure approach (PMA), to the framework of the GTM. PGTM is efficient because only the sensitivity analyses and the reliability analyses require function evaluations (FE). The optimization processes of monotonicity analyses and the coordination procedures are free of function evaluations. Several mathematical and engineering examples show the PGTM is capable of finding the optimal solutions with desirable reliability levels.


2012 ◽  
Vol 49 (6) ◽  
pp. 1844-1856 ◽  
Author(s):  
Nicholas A. Meadows ◽  
Joseph A. Schetz ◽  
Rakesh K. Kapania ◽  
Manav Bhatia ◽  
Guclu Seber

Sign in / Sign up

Export Citation Format

Share Document