supersonic transport
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 32)

H-INDEX

14
(FIVE YEARS 1)

Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 41
Author(s):  
Sigrun Matthes ◽  
David S. Lee ◽  
Ruben Rodriguez De De Leon ◽  
Ling Lim ◽  
Bethan Owen ◽  
...  

When working towards regulation of supersonic aviation, a comprehensive understanding of the global climate effect of supersonic aviation is required in order to develop future regulatory issues. Such research requires a comprehensive overview of existing scientific literature having explored the climate effect of aviation. This review article provides an overview on earlier studies assessing the climate effects of supersonic aviation, comprising non-CO2 effects. An overview on the historical evaluation of research focussing on supersonic aviation and its environmental impacts is provided, followed by an overview on concepts explored and construction of emission inventories. Quantitative estimates provided for individual effects are presented and compared. Subsequently, regulatory issues related to supersonic transport are summarised. Finally, requirements for future studies, e.g., in emission scenario construction or numerical modelling of climate effects, are summarised and main conclusions discussed.


2022 ◽  
Author(s):  
Mitchell L. Passarelli ◽  
Samuel E. Wonfor ◽  
Andy X. Zheng ◽  
Sundar Ram Manikandan ◽  
Yi C. Mazumdar ◽  
...  

2022 ◽  
Author(s):  
Bhargav N. Chaudhari ◽  
Timothy T. Takahashi

Aerospace ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Michel Nöding ◽  
Martin Schuermann ◽  
Lothar Bertsch ◽  
Marc Koch ◽  
Martin Plohr ◽  
...  

The German Aerospace Center has launched an internal project to assess the noise impact associated with supersonic transport aircraft during approach and departure. A dedicated simulation process is established to cover all relevant disciplines, i.e., aircraft and engine design, engine installation effects, flight simulation, and system noise prediction. The core of the simulation process is comprised of methods at the complexity and fidelity level of conceptual aircraft design, i.e., typical overall aircraft design methods and a semi-empirical approach for the noise modeling. Dedicated interfaces allow to process data from high fidelity simulation that will support or even replace initial low fidelity results in the long run. All of the results shown and discussed in this study are limited to the fidelity level of conceptual design. The application of the simulation process to the NASA 55t Supersonic Technology Concept Aeroplane, i.e., based on non-proprietary data for this vehicle, yields similar noise level predictions when compared to the published NASA results. This is used as an initial feasibility check of the new process and confirms the underlying methods and models. Such an initial verification of the process is understood as an essential step due to the lack of available noise data for supersonic transport aircraft in general. The advantageous effect of engine noise shielding on the resulting system noise is demonstrated based on predicted level time histories and certification noise levels. After this initial verification, the process is applied to evaluate a conceptual supersonic transport design based on a PhD thesis with two engines mounted under the wing, which is referred to as aircraft TWO. Full access to this vehicle’s design and performance data allows to investigate the influence of flight procedures on the resulting noise impact along approach and departure. These noise results are then assembled according to proposed Federal Aviation Agency regulations in their Notice of Proposed Rulemaking, e.g., speed limitations, for Supersonic transport noise certification and the regulations from Noise Chapters of the Annex 16 from the International Civil Aviation Organization in order to evaluate the resulting levels as a function of the flight procedure.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6615
Author(s):  
Andrea Aprovitola ◽  
Pasquale Emanuele Di Nuzzo ◽  
Giuseppe Pezzella ◽  
Antonio Viviani

Supersonic flight for commercial aviation is gaining a renewed interest, especially for business aviation, which demands the reduction of flight times for transcontinental routes. So far, the promise of civil supersonic flight has only been afforded by the Concorde and Tupolev T-144 aircraft. However, little or nothing can be found about the aerodynamics of these aeroshapes, the knowledge of which is extremely interesting to obtain before the development of the next-generation high-speed aircraft. Therefore, the present research effort aimed at filling in the lack of data on a Concorde-like aeroshape by focusing on evaluating the aerodynamics of a complete aircraft configuration under low-speed conditions, close to those of the approach and landing phase. In this framework, the present paper focuses on the CFD study of the longitudinal aerodynamics of a Concorde-like, tailless, delta-ogee wing seamlessly integrated onto a Sears–Haack body fuselage, suitable for civil transportation. The drag polar at a Mach number equal to 0.24 at a 30 m altitude was computed for a wide range of angles of attack (0∘,60∘), with a steady RANS simulation to provide the feedback of the aerodynamic behaviour post breakdown, useful for a preliminary design. The vortex-lift contribution to the aerodynamic coefficients was accounted for in the longitudinal flight condition. The results were in agreement with the analytical theory of the delta-wing. Flowfield sensitivity to the angle of attack at near-stall and post-stall flight attitudes confirmed the literature results. Furthermore, the longitudinal static stability was addressed. The CFD simulation also evidenced a static instability condition arising for 15∘≤α≤20∘ due to vortex breakdown, which was accounted for.


2021 ◽  
Author(s):  
Edan Baltman ◽  
Jimmy C. Tai ◽  
Mingxuan Shi ◽  
Dimitri N. Mavris

Sign in / Sign up

Export Citation Format

Share Document