A Second Order Space-Time Residual Distribution Method for Solving Compressible Flow on Moving Meshes

Author(s):  
Jiri Dobes ◽  
Herman Deconinck
2020 ◽  
Vol 79 (5) ◽  
pp. 1561-1589 ◽  
Author(s):  
M.E. Hubbard ◽  
M. Ricchiuto ◽  
D. Sármány

2005 ◽  
Vol 34 (4-5) ◽  
pp. 593-615 ◽  
Author(s):  
Jiřı́ Dobeš ◽  
Mario Ricchiuto ◽  
Herman Deconinck

Author(s):  
Fei Jin ◽  
Xiaoliang Liu ◽  
Fangfang Xing ◽  
Guoqiang Wen ◽  
Shuangkun Wang ◽  
...  

Background : The day-ahead load forecasting is an essential guideline for power generating, and it is of considerable significance in power dispatch. Objective: Most of the existing load probability prediction methods use historical data to predict a single area, and rarely use the correlation of load time and space to improve the accuracy of load prediction. Methods: This paper presents a method for day-ahead load probability prediction based on space-time correction. Firstly, the kernel density estimation (KDE) is employed to model the prediction error of the long short-term memory (LSTM) model, and the residual distribution is obtained. Then the correlation value is used to modify the time and space dimensions of the test set's partial period prediction values. Results: The experiment selected three years of load data in 10 areas of a city in northern China. The MAPE of the two modified models on their respective test sets can be reduced by an average of 10.2% and 6.1% compared to previous results. The interval coverage of the probability prediction can be increased by an average of 4.2% and 1.8% than before. Conclusion: The test results show that the proposed correction schemes are feasible.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
David Pérez Carlos ◽  
Augusto Espinoza ◽  
Andrew Chubykalo

Abstract The purpose of this paper is to get second-order gravitational equations, a correction made to Jefimenko’s linear gravitational equations. These linear equations were first proposed by Oliver Heaviside in [1], making an analogy between the laws of electromagnetism and gravitation. To achieve our goal, we will use perturbation methods on Einstein field equations. It should be emphasized that the resulting system of equations can also be derived from Logunov’s non-linear gravitational equations, but with different physical interpretation, for while in the former gravitation is considered as a deformation of space-time as we can see in [2–5], in the latter gravitation is considered as a physical tensor field in the Minkowski space-time (as in [6–8]). In Jefimenko’s theory of gravitation, exposed in [9, 10], there are two kinds of gravitational fields, the ordinary gravitational field, due to the presence of masses, at rest, or in motion and other field called Heaviside field due to and acts only on moving masses. The Heaviside field is known in general relativity as Lense-Thirring effect or gravitomagnetism (The Heaviside field is the gravitational analogous of the magnetic field in the electromagnetic theory, its existence was proved employing the Gravity Probe B launched by NASA (See, for example, [11, 12]). It is a type of gravitational induction), interpreted as a distortion of space-time due to the motion of mass distributions, (see, for example [13, 14]). Here, we will present our second-order Jefimenko equations for gravitation and its solutions.


Sign in / Sign up

Export Citation Format

Share Document