Experimental Study of the Properties of Near-Field and Far-Field Jet Noise

Author(s):  
Sébastien Barré ◽  
Vincent Fleury ◽  
Christophe Bogey ◽  
Christophe Bailly ◽  
Daniel Juve
2007 ◽  
Vol 6 (2) ◽  
pp. 73-92 ◽  
Author(s):  
Christophe Bogey ◽  
Sébastien Barré ◽  
Vincent Fleury ◽  
Christophe Bailly ◽  
Daniel Juvé

Author(s):  
Dean Long ◽  
Steven Martens

Model scale tests are conducted to assess the Noise/Performance trade for high speed jet noise reduction technologies. It is demonstrated that measuring the near field acoustic signature with a microphone array can be used to assess the far field noise using a procedure known as acoustic holography. The near field noise measurement is mathematically propagated producing an estimate of the noise level at the new location. Outward propagation produces an estimate of the far field noise. Propagation toward the jet axis produces the source distribution. Tests are conducted on convergent/divergent nozzles with three different area ratios, and several different chevron geometries. Noise is characterized by two independent processes: Shock cell noise radiating in the forward quadrant is produced when the nozzle is operated at non-ideally expanded conditions. Mach wave radiation propagates into the aft quadrant when the exhaust temperature is elevated. These results show good agreement with actual far field measurements from tests in the GE Cell 41 Acoustic Test Facility. Simultaneous performance measurement shows the change in thrust coefficient for different test conditions and configurations. Chevrons attached to the nozzle exit can reduce the noise by several dB at the expense of a minimal thrust loss.


Author(s):  
Foluso Ladeinde ◽  
Xiaodan Cai ◽  
Ken Alabi ◽  
Ramons Reba ◽  
Robert Schlinker ◽  
...  
Keyword(s):  

Author(s):  
T. Ishii ◽  
H. Oinuma ◽  
K. Nagai ◽  
N. Tanaka ◽  
Y. Oba ◽  
...  

This paper describes an experimental study on a notched nozzle for jet noise reduction. The notch, a tiny tetrahedral dent formed at the edge of a nozzle, is expected to enhance mixing within a limited region downstream of the nozzle. The enhanced mixing leads to the suppression of broadband peak components of jet noise with little effect on the engine performance. To investigate the noise reduction performances of a six-notch nozzle, a series of experiments have been performed at an outdoor test site. Tests on the engine include acoustic measurement in the far field to evaluate the noise reduction level with and without the notched nozzle, and pressure measurement near the jet plume to obtain information on noise sources. The far-field measurement indicated the noise reduction by as much as 3 dB in terms of overall sound pressure level in the rear direction of the engine. The use of the six-notch nozzle though decreased the noise-benefit in the side direction. Experimental data indicate that the high-frequency components deteriorate the noise reduction performance at wider angles of radiation. Although the increase in noise is partly because of the increase in velocity, the penetration of the notches into the jet plume is attributed to the increase in sound pressure level in higher frequencies. The results of near-field measurement suggest that an additional sound source appears up to x/D = 4 due to the notches. In addition, the total pressure maps downstream of the nozzle edge, obtained using a pressure rake, show that the notched nozzle deforms the shape of the mixing layer, causing it to become wavy within a limited distance from the nozzle. This deformation of the mixing layer implies strong vortex shedding and thus additional noise sources. To improve the noise characteristics, we proposed a revised version of the nozzle on the basis of a computational prediction, which contained 18 notches that were smaller than those in the 6-notched nozzle. Ongoing tests indicate greater noise reduction in agreement with the computational prediction.


1998 ◽  
Vol 06 (03) ◽  
pp. 307-320 ◽  
Author(s):  
R. R. Mankbadi ◽  
S. H. Shih ◽  
D. R. Hixon ◽  
J. T. Stuart ◽  
L. A. Povinelli

While large-scale simulation of jet noise is the most thorough technique currently available for jet noise prediction, three-dimensional direct computation of both the near and far field requires prohibitive computational capability. In this work we propose to limit large-scale simulation to the near field to provide the pressure distribution over a cylindrical surface surrounding the jet. A surface-integral formulation is presented herein in which the calculated pressure on the cylindrical surface is used to obtain the far-field sound, without the need for the normal derivative of the pressure. The results are compared to that of direct large-scale simulation and to the zonal approach in which linearized Euler equations are used as an extension tool.


Author(s):  
Dean Long ◽  
Steve Martens

Part I of this paper describes a methodology for assessing the far field jet noise from high speed exhaust nozzles using a microphone array in the near field of the exhaust plume. The near field noise measurement is mathematically propagated producing an estimate of the noise level at the new location. Outward propagation produces an estimate of the far field noise. Propagation toward the jet axis produces the source distribution. Part II described here provides a direct validation of this process using a generic CD nozzle in a facility where both the near field and the far field are measured simultaneously. Comparison of these data sets show good agreement over the typical operating range for this type of nozzle. The far field noise is characterized by two independent processes: Shock cell noise radiating in the forward quadrant is produced when the nozzle is operated at non-ideally expanded conditions. Mach wave radiation propagates into the aft quadrant when the exhaust temperature is elevated. Subsequent tests in an acoustically treated nozzle thrust stand demonstrate the value of the near field array allowing immediate feedback on the noise/performance tradeoff for high speed jet noise reduction technologies.


Sign in / Sign up

Export Citation Format

Share Document