Reducing Water Vapor Intrusion in Pressure Sense Line of an Upper-Stage Rocket Engine

Author(s):  
Andrew Longenecker ◽  
Stephen Clark
Author(s):  
Boris A. Sokolov ◽  
Nikolay N. Tupitsyn

The paper presents results of engineering studies and research and development efforts at RSC Energia to analyze and prove the feasibility of using the mass-produced oxygen-hydrocarbon engine 11D58M with 8.5 ton-force thrust as a basis for development of a high-performance multifunctional rocket engine with oxygen cooling and 5 ton-force thrust, which is optimal for upper stages (US), embodying a system that does not include a gas generator. The multi-functionality of the engine implies including in it additional units supporting some functions that are important for US, such as feeding propellant from US tanks to the engine after flying in zero gravity, autonomous control of the engine automatic equipment to support its firing, shutdown, adjustments during burn and emergency protection in case of off-nominal operation, as well as generating torques for controlling the US attitude and stabilizing it during coasting, etc. Replacing conventional engine chamber cooling that uses high-boiling hydrocarbon fuel with the innovative oxygen cooling makes it possible to get rid of the internal film cooling circuits and eliminate their attendant losses of fuel, while the use of the oxygen gasified in the cooling circuit of the chamber to drive the turbo pump assembly permits to design an engine that does not have a gas generator. Key words: Multifunctional rocket engine, oxygen cooling, gas-generatorless design, upper stage.


Author(s):  
William Sack ◽  
Julie Watanabe ◽  
Masahiro Atsumi ◽  
Hidemasa Nakanishi
Keyword(s):  

Author(s):  
Boris A. SOKOLOV ◽  
Nikolay N. TUPITSYN ◽  
Evgeniy N. TUMANIN ◽  
Igor A. KRYUKOV ◽  
Andrey V. KISELEV ◽  
...  

The paper presents results of unsolicited exploratory design studies done by the authors into the feasibility of developing for a super-heavy launch vehicle a single-stage oxygen-hydrocarbon acceleration/deceleration unit (ADU) with two liquid-propellant rocket engines 11D58M developed by RSC Energia, intended for insertion of manned spacecraft into lunar orbit, as well as for insertion of super-heavy spacecraft into geostationary orbit (including the orbital module high-apogee transfer profile using lunar gravity assist maneuver). It demonstrates that the single-stage ADU will have a number of important advantages over both a single-stage oxygen-hydrogen ADU and a functionally similar two-stage acceleration/deceleration system of an orbital module in the form of a tandem stack of an oxygen-hydrogen acceleration stage and correction and braking stage. To assure the start-ups of the main liquid propulsion system of the ADU, it proposes a new method for inertial propellant component phase separation in the tanks in zero-gravity environment using a pre-startup pre-programmed ullage separation turn maneuver of the orbital unit about its transverse axis of inertia. Key words: Integrated launch vehicle, launch vehicle, orbital module, upper stage, orbital transfer vehicle, acceleration/deceleration unit, ullage maneuver, liquid-propellant rocket engine.


Sign in / Sign up

Export Citation Format

Share Document