Analytical Target Cascading for Multi-Mode Design Optimization: An Engine Case Study

Author(s):  
Shen Lu ◽  
Harrison Kim ◽  
Julian Norato ◽  
Christopher Ha
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ping Jiang ◽  
Jianzhuang Wang ◽  
Qi Zhou ◽  
Xiaolin Zhang

Multidisciplinary design optimization (MDO) has been applied widely in the design of complex engineering systems. To ease MDO problems, analytical target cascading (ATC) organizes MDO process into multilevels according to the components of engineering systems, which provides a promising way to deal with MDO problems. ATC adopts a coordination strategy to coordinate the couplings between two adjacent levels in the design optimization process; however, existing coordination strategies in ATC face the obstacles of complicated coordination process and heavy computation cost. In order to conquer this problem, a quadratic exterior penalty function (QEPF) based ATC (QEPF-ATC) approach is proposed, where QEPF is adopted as the coordination strategy. Moreover, approximate models are adopted widely to replace the expensive simulation models in MDO; a QEPF-ATC and Kriging model combined approach is further proposed to deal with MDO problems, owing to the comprehensive performance, high approximation accuracy, and robustness of Kriging model. Finally, the geometric programming and reducer design cases are given to validate the applicability and efficiency of the proposed approach.


Author(s):  
Bo Yang Yu ◽  
Tomonori Honda ◽  
Syed Zubair ◽  
Mostafa H. Sharqawy ◽  
Maria C. Yang

Large-scale desalination plants are complex systems with many inter-disciplinary interactions and different levels of sub-system hierarchy. Advanced complex systems design tools have been shown to have a positive impact on design in aerospace and automotive, but have generally not been used in the design of water systems. This work presents a multi-disciplinary design optimization approach to desalination system design to minimize the total water production cost of a 30,000m3/day capacity reverse osmosis plant situated in the Middle East, with a focus on comparing monolithic with distributed optimization architectures. A hierarchical multi-disciplinary model is constructed to capture the entire system’s functional components and subsystem interactions. Three different multi-disciplinary design optimization (MDO) architectures are then compared to find the optimal plant design that minimizes total water cost. The architectures include the monolithic architecture multidisciplinary feasible (MDF), individual disciplinary feasible (IDF) and the distributed architecture analytical target cascading (ATC). The results demonstrate that an MDF architecture was the most efficient for finding the optimal design, while a distributed MDO approach such as analytical target cascading is also a suitable approach for optimal design of desalination plants, but optimization performance may depend on initial conditions.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Jeongwoo Han ◽  
Panos Y. Papalambros

Decomposition-based strategies, such as analytical target cascading (ATC), are often employed in design optimization of complex systems. Achieving convergence and computational efficiency in the coordination strategy that solves the partitioned problem is a key challenge. A new convergent strategy is proposed for ATC that coordinates interactions among subproblems using sequential linearizations. The linearity of subproblems is maintained using infinity norms to measure deviations between targets and responses. A subproblem suspension strategy is used to suspend temporarily inclusion of subproblems that do not need significant redesign, based on trust region and target value step size. An individual subproblem trust region method is introduced for faster convergence. The proposed strategy is intended for use in design optimization problems where sequential linearizations are typically effective, such as problems with extensive monotonicities, a large number of constraints relative to variables, and propagation of probabilities with normal distributions. Experiments with test problems show that, relative to standard ATC coordination, the number of subproblem evaluations is reduced considerably while the solution accuracy depends on the degree of monotonicity and nonlinearity.


2012 ◽  
Vol 195-196 ◽  
pp. 801-806
Author(s):  
Bei Bei Wu ◽  
Hai Huang

For the multidisciplinary design optimization (MDO) question of autonomous rendezvous spacecraft, first, the analysis model and coupling relations of payload, propulsion and structure discipline are discussed; then the updated analytical target cascading (UATC) method is introduced and compared with the widely used collaborative optimization (CO). Results prove that the UATC method requires 54.8% fewer average subspace iterations than the CO and is more efficient for practical engineering MDO problem. Finally, based on the UATC method, a MDO problem of autonomous rendezvous spacecraft is solved and gets reasonable and effective results. The process proves the effectiveness of UATC method solving spacecraft MDO problem.


Sign in / Sign up

Export Citation Format

Share Document