scholarly journals Microphone Array Measurements in a Cryogenic Wind Tunnel

Author(s):  
Thomas Ahlefeldt ◽  
Lars Koop
AIAA Journal ◽  
2010 ◽  
Vol 48 (7) ◽  
pp. 1470-1479 ◽  
Author(s):  
Thomas Ahlefeldt ◽  
Lars Koop

2017 ◽  
Vol 16 (4-5) ◽  
pp. 326-357
Author(s):  
Nathan J Burnside ◽  
William C Horne ◽  
Kevin R Elmer ◽  
Rui Cheng ◽  
Leon Brusniak

Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75% hybrid wing body aircraft model were acquired with a traversing phased microphone array in the Arnold Engineering Development Complex NFAC 40- by 80-foot wind tunnel. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements support the development of a Krueger noise model which includes cove and bracket noise.


Author(s):  
Chenhui Yu ◽  
Fei Liao ◽  
Haibo Ji ◽  
Wenhua Wu

With the increasing requirement of Reynolds number simulation in wind tunnel tests, the cryogenic wind tunnel is considered as a feasible method to realize high Reynolds number. Characteristic model-based adaptive controller design method is introduced to flow field control problem of the cryogenic wind tunnel. A class of nonlinear multi-input multi-output (MIMO) system is given for theoretical research that is related to flow field control of the cryogenic wind tunnel. The characteristic model in the form of second-order time-varying difference equations is provided to represent the system. A characteristic model-based adaptive controller is also designed correspondingly. The stability analysis of the closed loop system composed of the characteristic model or the exact discrete-time model and the proposed controller is investigated respectively. Numerical simulation is presented to illustrate the effectiveness of this control method. The modeling and control problem based on characteristic model method for a class of MIMO system are studied and first applied to the cryogenic wind tunnel control field.


2021 ◽  
Vol 62 (5) ◽  
Author(s):  
Erik Schneehagen ◽  
Thomas F. Geyer ◽  
Ennes Sarradj ◽  
Danielle J. Moreau

Abstract One known method to reduce vortex shedding from the tip of a blade is the use of end plates or winglets. Although the aerodynamic impact of such end plates has been investigated in the past, no studies exist on the effect of such end plates on the far-field noise. The aeroacoustic noise reduction of three different end-plate geometries is experimentally investigated. The end plates are applied to the free end of a wall-mounted symmetric NACA 0012 airfoil and a cambered NACA 4412 airfoil with an aspect ratio of 2 and natural boundary layer transition. Microphone array measurements are taken in the aeroacoustic open-jet wind tunnel at BTU Cottbus-Senftenberg for chord-based Reynolds numbers between 75,000 and 225,000 and angles of attack from 0$$^\circ$$ ∘ to 30$$^\circ$$ ∘ . The obtained acoustic spectra show a broad frequency hump for the airfoil base configurations at higher angles of attack that is attributed to tip noise. Hot-wire measurements taken for one configuration show that the application of an end plate diffuses the vorticity at the tip. The aeroacoustic noise contribution of the tip can be reduced when the endplates are applied. This reduction is most effective for higher angles of attack, when the tip vortex is the dominant sound source. Graphic abstract


2021 ◽  
Vol 182 ◽  
pp. 108247
Author(s):  
Lourenço Tércio Lima Pereira ◽  
Roberto Merino-Martínez ◽  
Daniele Ragni ◽  
David Gómez-Ariza ◽  
Mirjam Snellen

Sign in / Sign up

Export Citation Format

Share Document