Strategy for Optimal, Long-Term Stationkeeping of Libration Point Orbits in the Earth-Moon System

Author(s):  
Thomas Pavlak ◽  
Kathleen Howell
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qiwei Guo ◽  
Bo Xu ◽  
Hanlun Lei

The attitude motion of a rigid spacecraft is studied in the Earth-Moon circular restricted three-body problem. Firstly, the equilibrium attitude and its stability as functions of the moments of inertia are discussed when the spacecraft is assumed at the libration points. Then, periodic attitudes of a spacecraft with mass distribution given in the stable regions are obtained. Regarding space mission applications, the Sun orientation is discussed, and the orbit-attitude resonances are constructed for spacecrafts working on the libration point orbits by means of a continuation procedure.


2016 ◽  
Vol 26 (05) ◽  
pp. 1630013 ◽  
Author(s):  
Amanda F. Haapala ◽  
Kathleen C. Howell

The Earth–Moon libration points are of interest for future missions and have been proposed for both storage of propellant and supplies for lunar missions and as locations to establish space-based facilities for human missions. Thus, further development of an available transport network in the vicinity of the Moon is valuable. In this investigation, a methodology to search for transfers between periodic lunar libration point orbits is developed, and a catalog of these transfers is established, assuming the dynamics associated with the Earth–Moon circular restricted three-body problem. Maneuver-free transfers, i.e. heteroclinic and homoclinic connections, are considered, as well as transfers that require relatively small levels of [Formula: see text]. Considering the evolution of Earth–Moon transfers as the mass parameter is reduced, a relationship emerges between the available transfers in the Earth–Moon system and maneuver-free transfers that exist within the Hill three-body problem. The correlation between transfers in these systems is examined and offers insight into the existence of solutions within the catalog. To demonstrate the persistence of the catalog transfers in a higher-fidelity model, several solutions are transitioned to a Sun–Earth–Moon ephemeris model with the inclusion of solar radiation pressure and lunar gravity harmonics. The defining characteristics are preserved in the high-fidelity model, validating both the techniques employed for this investigation and the solutions computed within the catalog.


2017 ◽  
Vol 128 (4) ◽  
pp. 409-433 ◽  
Author(s):  
Yu Cheng ◽  
Gerard Gómez ◽  
Josep J. Masdemont ◽  
Jianping Yuan

1990 ◽  
Vol 123 ◽  
pp. 391-395 ◽  
Author(s):  
Robert W. Farquhar ◽  
David W. Dunham

AbstractThe Sun-Earth libration points, L1 and L2, are located 1.5 million kilometers from the Earth towards and away from the Sun. Halo orbits about these points have significant advantages for space observatories in terms of viewing geometry, thermal and radiation environment, and delta-V expediture.


2014 ◽  
Vol 67 (5) ◽  
pp. 737-752 ◽  
Author(s):  
Lei Zhang ◽  
Bo Xu

In view of the shortcomings of existing satellite navigation systems in deep-space performance, candidate architectures which utilise libration point orbits in the Earth-Moon system are proposed to create an autonomous satellite navigation system for lunar missions. Three candidate constellations are systematically studied in order to achieve continuous global coverage for lunar orbits: the Earth-Moon L1,2 two-satellite constellation, the Earth-Moon L2,4,5 three-satellite constellation and the Earth-Moon L1,2,4,5 four-satellite constellation. After a thorough search for possible configurations, the latter two constellations are found to be the simplest feasible architectures for lunar navigation. Finally, an autonomous orbit determination simulation is performed to verify the autonomy of the system and two optimal configurations are obtained in a comprehensive consideration of coverage and autonomous orbit determination performance.


Sign in / Sign up

Export Citation Format

Share Document