scholarly journals Study of the transfer between libration point orbits and lunar orbits in Earth–Moon system

2017 ◽  
Vol 128 (4) ◽  
pp. 409-433 ◽  
Author(s):  
Yu Cheng ◽  
Gerard Gómez ◽  
Josep J. Masdemont ◽  
Jianping Yuan
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qiwei Guo ◽  
Bo Xu ◽  
Hanlun Lei

The attitude motion of a rigid spacecraft is studied in the Earth-Moon circular restricted three-body problem. Firstly, the equilibrium attitude and its stability as functions of the moments of inertia are discussed when the spacecraft is assumed at the libration points. Then, periodic attitudes of a spacecraft with mass distribution given in the stable regions are obtained. Regarding space mission applications, the Sun orientation is discussed, and the orbit-attitude resonances are constructed for spacecrafts working on the libration point orbits by means of a continuation procedure.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yang Jin ◽  
Bo Xu

In this paper, a modified targeting strategy is developed for missions on libration point orbits (LPOs) in the real Earth-Moon system. In order to simulate a station-keeping procedure in a dynamic model as realistic as possible, LPOs generated in the circular restricted three-body problem (CRTBP) are discretized and reconverged in a geocentric inertial system for later simulations. After that, based on the dynamic property of the state transition matrix, a modified strategy of selecting target points for station-keeping is presented to reduce maneuver costs. By considering both the solar gravity and radiation pressure in a nominal LPO design, station-keeping simulations about fuel consumption for real LPOs around both collinear and triangular libration points are performed in a high-fidelity ephemeris model. Results show the effectivity of the modified strategy with total maneuver costs reduced by greater than 10% for maintaining triangular LPOs.


Sign in / Sign up

Export Citation Format

Share Document