Adaptive Model Tracking for Distributed Parameter Control of Linear Infinite-Dimensional Systems in Hilbert Space

Author(s):  
Mark J. Balas ◽  
Susan A. Frost
2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
De-Xing Kong ◽  
Fa Wu

This survey note describes a new type of distributed parameter control systems—the two-point boundary value problems for infinite-dimensional dynamical systems, particularly, for hyperbolic systems of partial differential equations of second order, some of the discoveries that have been done about it and some unresolved questions.


2018 ◽  
Vol 14 (2) ◽  
pp. 7818-7833 ◽  
Author(s):  
Raheam Al Saphory ◽  
Mrooj Al Bayati

The aim of this paper is study and explore the notion of  the regional boundary gradient detectability in connection with the choice of strategic gradient sensors on sub-region of the considered system domain boundary. More precisely, the principal reason behind introducing this notion is that the possibility to design a dynamic system (may be called regional boundary gradient observer) which enable to estimate the unknown system state gradient. Then for linear infinite dimensional systems in a Hilbert space,  we give various new results related with different measurements. In addition, we provided a description of the regional boundary exponential gradient strategic sensors for completion the regional boundary exponential gradient observability and regional boundary exponential gradient detectability. Finally, we present and illustrate the some applications of sensors structures which relate by regional boundary exponential gradient detectability in diffusion distributed parameter systems.


Sign in / Sign up

Export Citation Format

Share Document