Shock Wave Laminar Boundary Layer Interaction Over a Double Wedge in a High Mach Number Flow

Author(s):  
Mohammad A. Badr ◽  
Doyle D. Knight
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yong-yi Zhou ◽  
Yi-long Zhao ◽  
Yu-xin Zhao

The separation length of shock wave/boundary layer interaction (SWBLI) was studied by a numerical method, which was validated by experimental results. The computational domain was two-dimensional (2-D). The flow field was an incident oblique shock interacting with a turbulent boundary layer on a flat adiabatic plate. According to the simulation data, the dependency of the separation length on the relevant flow parameters, such as the incident shock strength, Reynolds number, and Mach number, was analyzed in the range of 2≤M≤7. Based on the relations with the flow parameters, two models of the separation length at low and high Mach numbers were proposed, respectively, which can be used to predict the extent of the separation in the SWBLI.


2004 ◽  
Vol 126 (4) ◽  
pp. 473-481 ◽  
Author(s):  
Hirotaka Higashimori ◽  
Kiyoshi Hasagawa ◽  
Kunio Sumida ◽  
Tooru Suita

Requirements for aeronautical gas turbine engines for helicopters include small size, low weight, high output, and low fuel consumption. In order to achieve these requirements, development work has been carried out on high efficiency and high pressure ratio compressors. As a result, we have developed a single stage centrifugal compressor with a pressure ratio of 11 for a 1000 shp class gas turbine. The centrifugal compressor is a high transonic compressor with an inlet Mach number of about 1.6. In high inlet Mach number compressors, the flow distortion due to the shock wave and the shock boundary layer interaction must have a large effect on the flow in the inducer. In order to ensure the reliability of aerodynamic design technology, the actual supersonic flow phenomena with a shock wave must be ascertained using measurement and Computational Fluid Dynamics (CFD). This report presents the measured results of the high transonic flow at the impeller inlet using Laser Doppler Velocimeter (LDV) and verification of CFD, with respect to the high transonic flow velocity distribution, pressure distribution, and shock boundary layer interaction at the inducer. The impeller inlet tangential velocity is about 460 m/s and the relative Mach number reaches about 1.6. Using a LDV, about 500 m/s relative velocity was measured preceding a steep deceleration of velocity. The following steep deceleration of velocity at the middle of blade pitch clarified the cause as being the pressure rise of a shock wave, through comparison with CFD as well as comparison with the pressure distribution measured using a high frequency pressure transducer. Furthermore, a reverse flow is measured in the vicinity of casing surface. It was clarified by comparison with CFD that the reverse flow is caused by the shock-boundary layer interaction. Generally CFD shows good agreement with the measured velocity distribution at the inducer and splitter inlet, except in the vicinity of the casing surface.


Sign in / Sign up

Export Citation Format

Share Document