Adjoint and Truncation Error Based Adaptation for Finite Volume Schemes with Error Estimates

Author(s):  
Joseph M. Derlaga ◽  
Tyrone Phillips ◽  
Christopher J. Roy ◽  
Jeffrey Borggaard
Author(s):  
Graham Baird ◽  
Endre Suli

This paper concerns the construction and analysis of a numerical scheme for a mixed discrete-continuous fragmentation equation. A finite volume scheme is developed, based on a conservative formulation of a truncated version of the equations. The approximate solutions provided by this scheme are first shown to display conservation of mass and preservation of nonnegativity. Then, by utilising a Dunford-Pettis style argument, the sequence of approximate solutions generated is shown, under given restrictions on the model and the mesh, to converge (weakly) in an appropriate L1 space to a weak solution to the problem. By applying the methods and theory of operator semigroups, we are able to show that these weak solutions are unique and necessarily classical (differentiable) solutions, a degree of regularity not generally established when finite volume schemes are applied to such problems. Furthermore, this approach enabled us to derive a bound for the error induced by the truncation of the mass domain, and also establish the convergence of the truncated solutions as the truncation point is increased without bound. Finally, numerical simulations are performed to investigate the performance of the scheme and assess its rate of convergence as the mesh is refined, whilst also verifying the bound on the truncation error.


2018 ◽  
Vol 26 (1) ◽  
pp. 35-62
Author(s):  
Dietmar Kröner ◽  
Mirko Rokyta

AbstractIt is still an open problem to provea priorierror estimates for finite volume schemes of higher order MUSCL type, including limiters, on unstructured meshes, which show some improvement compared to first order schemes. In this paper we use these higher order schemes for the discretization of convection dominated elliptic problems in a convex bounded domainΩin ℝ2and we can prove such kind of ana priorierror estimate. In the part of the estimate, which refers to the discretization of the convective term, we gainh1/2. Although the original problem is linear, the numerical problem becomes nonlinear, due to MUSCL type reconstruction/limiter technique.


Sign in / Sign up

Export Citation Format

Share Document