fragmentation equation
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
PH. LAURENÇOT ◽  
CH. WALKER

The dynamics of the fragmentation equation with size diffusion is investigated when the size ranges in $(0,\infty)$ . The associated linear operator involves three terms and can be seen as a nonlocal perturbation of a Schrödinger operator. A Miyadera perturbation argument is used to prove that it is the generator of a positive, analytic semigroup on a weighted $L_1$ -space. Moreover, if the overall fragmentation rate does not vanish at infinity, then there is a unique stationary solution with given mass. Assuming further that the overall fragmentation rate diverges to infinity for large sizes implies the immediate compactness of the semigroup and that it eventually stabilizes at an exponential rate to a one-dimensional projection carrying the information of the mass of the initial value.


Author(s):  
Azmy S. Ackleh ◽  
Rainey Lyons ◽  
Nicolas Saintier

We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic phytoplankton. This model is formulated on the space of Radon measures equipped with the bounded Lipschitz norm and unifies the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models. To understand the interplay between the physical processes of coagulation and fragmentation and the biological processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that stationary solutions are absolutely continuous under some conditions on model parameters. We develop a semi-discrete approximation scheme which conserves mass and prove its convergence to the unique weak solution. We then use the scheme to perform numerical simulations for the model.


2021 ◽  
Vol 17 (9) ◽  
pp. e1008964
Author(s):  
Magali Tournus ◽  
Miguel Escobedo ◽  
Wei-Feng Xue ◽  
Marie Doumic

The dynamics by which polymeric protein filaments divide in the presence of negligible growth, for example due to the depletion of free monomeric precursors, can be described by the universal mathematical equations of ‘pure fragmentation’. The rates of fragmentation reactions reflect the stability of the protein filaments towards breakage, which is of importance in biology and biomedicine for instance in governing the creation of amyloid seeds and the propagation of prions. Here, we devised from mathematical theory inversion formulae to recover the division rates and division kernel information from time dependent experimental measurements of filament size distribution. The numerical approach to systematically analyze the behaviour of pure fragmentation trajectories was also developed. We illustrate how these formulae can be used, provide some insights on their robustness, and show how they inform the design of experiments to measure fibril fragmentation dynamics. These advances are made possible by our central theoretical result on how the length distribution profile of the solution to the pure fragmentation equation aligns with a steady distribution profile for large times.


Author(s):  
Mehakpreet Singh ◽  
Gavin Walker

AbstractThis work is focused on developing a finite volume scheme for approximating a fragmentation equation. The mathematical analysis is discussed in detail by examining thoroughly the consistency and convergence of the numerical scheme. The idea of the proposed scheme is based on conserving the total mass and preserving the total number of particles in the system. The proposed scheme is free from the trait that the particles are concentrated at the representative of the cells. The verification of the scheme is done against the analytical solutions for several combinations of standard fragmentation kernel and selection functions. The numerical testing shows that the proposed scheme is highly accurate in predicting the number distribution function and various moments. The scheme has the tendency to capture the higher order moments even though no measure has been taken for their accuracy. It is also shown that the scheme is second-order convergent on both uniform and nonuniform grids. Experimental order of convergence is used to validate the theoretical observations of convergence.


Author(s):  
Benedetta Cavalli

The growth-fragmentation equation models systems of particles that grow and reproduce as time passes. An important question concerns the asymptotic behaviour of its solutions. Bertoin and Watson ( $2018$ ) developed a probabilistic approach relying on the Feynman-Kac formula, that enabled them to answer to this question for sublinear growth rates. This assumption on the growth ensures that microscopic particles remain microscopic. In this work, we go further in the analysis, assuming bounded fragmentations and allowing arbitrarily small particles to reach macroscopic mass in finite time. We establish necessary and sufficient conditions on the coefficients of the equation that ensure Malthusian behaviour with exponential speed of convergence to the asymptotic profile. Furthermore, we provide an explicit expression of the latter.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 635
Author(s):  
Jitraj Saha ◽  
Andreas Bück

In this article, a new numerical scheme for the solution of the multidimensional fragmentation problem is presented. It is the first that uses the conservative form of the multidimensional problem. The idea to apply the finite volume scheme for solving one-dimensional linear fragmentation problems is extended over a generalized multidimensional setup. The derivation is given in detail for two-dimensional and three-dimensional problems; an outline for the extension to higher dimensions is also presented. Additionally, the existing one-dimensional finite volume scheme for solving conservative one-dimensional multi-fragmentation equation is extended to solve multidimensional problems. The accuracy and efficiency of both proposed schemes is analyzed for several test problems.


Author(s):  
Graham Baird ◽  
Endre Suli

This paper concerns the construction and analysis of a numerical scheme for a mixed discrete-continuous fragmentation equation. A finite volume scheme is developed, based on a conservative formulation of a truncated version of the equations. The approximate solutions provided by this scheme are first shown to display conservation of mass and preservation of nonnegativity. Then, by utilising a Dunford-Pettis style argument, the sequence of approximate solutions generated is shown, under given restrictions on the model and the mesh, to converge (weakly) in an appropriate L1 space to a weak solution to the problem. By applying the methods and theory of operator semigroups, we are able to show that these weak solutions are unique and necessarily classical (differentiable) solutions, a degree of regularity not generally established when finite volume schemes are applied to such problems. Furthermore, this approach enabled us to derive a bound for the error induced by the truncation of the mass domain, and also establish the convergence of the truncated solutions as the truncation point is increased without bound. Finally, numerical simulations are performed to investigate the performance of the scheme and assess its rate of convergence as the mesh is refined, whilst also verifying the bound on the truncation error.


2021 ◽  
Vol 53 (5) ◽  
pp. 5185-5214
Author(s):  
José A. Can͂izo ◽  
Pierre Gabriel ◽  
Havva Yoldaş

Sign in / Sign up

Export Citation Format

Share Document