Design and Validation of a New Algorithm for the Online Computation of the Earth’s Magnetic Field Model

Author(s):  
Farid Gulmammadov
2021 ◽  
Vol 2145 (1) ◽  
pp. 012049
Author(s):  
R Supakulopas

Abstract Archaeological dating is crucial in archaeology as it is a key to understand human history. However, traditional dating methods used by archaeologists such as potassium-argon dating and luminescence dating can provide ambiguous age results, e.g., argon loss during the dating returns young apparent ages. Therefore, I plan to establish an archaeomagnetic secular variation (ASV) curve to resolve this problem and use the ASV curve as an alternative tool to date archaeological artefacts. However, archaeomagnetic data in Thailand are absent from literature. Therefore, the ASV curve cannot be constructed from the archaeomagnetic data for this locality. To provide archaeomagnetic data to construct the ASV curve, the directions of the Earth’s magnetic field recorded in kiln walls from Ban Ko Noi (KN123, age 1,370 ± 100 A.D.), Si Satchanalai were measured. The mean declination and inclination of 49.6° and 32.6° with 95% confidence limit of 5.4° were determined from 10 samples from kiln KN123. Mean directions from this study were also compared with the directions of the Earth’s magnetic field in Thailand during 1,370 A.D. from the global archaeomagnetic field model ARCH3k.1. Declination and inclination from this study show significant departure from the field predicted by the ARCH3k.1 model.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
C. Stolle ◽  
I. Michaelis ◽  
C. Xiong ◽  
M. Rother ◽  
Th. Usbeck ◽  
...  

AbstractThe Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission carries magnetometers that are dedicated to enhance the satellite’s navigation. After appropriate calibration and characterisation of artificial magnetic disturbances, these observations are valuable assets to characterise the natural variability of Earth’s magnetic field. We describe the data pre-processing, the calibration, and characterisation strategy against a high-precision magnetic field model applied to the GRACE-FO magnetic data. During times of geomagnetic quiet conditions, the mean residual to the magnetic model is around 1 nT with standard deviations below 10 nT. The mean difference to data of ESA’s Swarm mission, which is dedicated to monitor the Earth’s magnetic field, is mainly within ± 10 nT during conjunctions. The performance of GRACE-FO magnetic data is further discussed on selected scientific examples. During a magnetic storm event in August 2018, GRACE-FO reveals the local time dependence of the magnetospheric ring current signature, which is in good agreement with results from a network of ground magnetic observations. Also, derived field-aligned currents (FACs) are applied to monitor auroral FACs that compare well in amplitude and statistical behaviour for local time, hemisphere, and solar wind conditions to approved earlier findings from other missions including Swarm. On a case event, it is demonstrated that the dual-satellite constellation of GRACE-FO is most suitable to derive the persistence of auroral FACs with scale lengths of 180 km or longer. Due to a relatively larger noise level compared to dedicated magnetic missions, GRACE-FO is especially suitable for high-amplitude event studies. However, GRACE-FO is also sensitive to ionospheric signatures even below the noise level within statistical approaches. The combination with data of dedicated magnetic field missions and other missions carrying non-dedicated magnetometers greatly enhances related scientific perspectives.


Author(s):  
A. Soloviev ◽  
A. Khokhlov ◽  
E. Jalkovsky ◽  
A. Berezko ◽  
A. Lebedev ◽  
...  

2011 ◽  
Vol 12 (2) ◽  
pp. 1-9
Author(s):  
A. E. Berezko ◽  
A. V. Khokhlov ◽  
A. A. Soloviev ◽  
A. D. Gvishiani ◽  
E. A. Zhalkovsky ◽  
...  

1967 ◽  
Vol 20 (1) ◽  
pp. 101 ◽  
Author(s):  
KJW Lynn ◽  
J Crouchley

Results of a study at Brisbane of individual night-time sferics of known origin are described. A propagation attenuation minimum was observed in the 3-6 kHz range. The geographic distribution of sferic types was also examined. Apparent propagation asynunetries were observed, since sferics were detected at greater ranges to the west than to the east at 10 kHz, whilst the number of tweek-sferics arising from the east was about four times that arising from the west. Comparison with European studies suggest that these asymmetries are general. These results are then " interpreted in terms of an ionospheric reflection cgefficient which is a function of the effective angle of incidence of the wave on the ionosphere and of orientation with respect to the Earth's magnetic field within the ionosphere.


2019 ◽  
Vol 287 ◽  
pp. 10-20 ◽  
Author(s):  
Kazuhiro Okayama ◽  
Nobutatsu Mochizuki ◽  
Yutaka Wada ◽  
Yo-ichiro Otofuji

2004 ◽  
Vol 218 (1-2) ◽  
pp. 197-213 ◽  
Author(s):  
Christoph Heunemann ◽  
David Krása ◽  
Heinrich C Soffel ◽  
Evguenij Gurevitch ◽  
Valerian Bachtadse

Sign in / Sign up

Export Citation Format

Share Document