Advanced Modeling of Non-equilibrium Flows using a Maximum Entropy “Quadratic” Formulation

Author(s):  
Maitreyee Sharma ◽  
Yen Liu ◽  
Marco Panesi
Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 884 ◽  
Author(s):  
Rodrigo Cofré ◽  
Leonardo Videla ◽  
Fernando Rosas

Although most biological processes are characterized by a strong temporal asymmetry, several popular mathematical models neglect this issue. Maximum entropy methods provide a principled way of addressing time irreversibility, which leverages powerful results and ideas from the literature of non-equilibrium statistical mechanics. This tutorial provides a comprehensive overview of these issues, with a focus in the case of spike train statistics. We provide a detailed account of the mathematical foundations and work out examples to illustrate the key concepts and results from non-equilibrium statistical mechanics.


2003 ◽  
Vol 10 (03) ◽  
pp. 281-296 ◽  
Author(s):  
Matt Davison ◽  
J. S. Shiner

To overcome the deficits of entropy as a measure for disorder when the number of states available to a system can change, Landsberg defined “disorder” as the entropy normalized to the maximum entropy. In the simplest cases, the maximum entropy is that of the equiprobable distribution, corresponding to a completely random system. However, depending on the question being asked and on system constraints, this absolute maximum entropy may not be the proper maximum entropy. To assess the effects of interactions on the “disorder” of a 1-dimensional spin system, the correct maximum entropy is that of the paramagnet (no interactions) with the same net magnetization; for a non-equilibrium system the proper maximum entropy may be that of the corresponding equilibrium system; and for hierarchical structures, an appropriate maximum entropy for a given level of the hierarchy is that of the system which is maximally random, subject to constraints deriving from the next lower level. Considerations of these examples leads us to introduce the “equivalent random system”: that system which is maximally random consistent with any constraints and with the question being asked. It is the entropy of the “equivalent random system” which should be taken as the maximum entropy in Landsberg's “disorder”.


2015 ◽  
Vol 17 (2) ◽  
pp. 371-400 ◽  
Author(s):  
Roman Pascal Schaerer ◽  
Manuel Torrilhon

AbstractMoment equations provide a flexible framework for the approximation of the Boltzmann equation in kinetic gas theory. While moments up to second order are sufficient for the description of equilibrium processes, the inclusion of higher order moments, such as the heat flux vector, extends the validity of the Euler equations to non-equilibrium gas flows in a natural way.Unfortunately, the classical closure theory proposed by Grad leads to moment equations, which suffer not only from a restricted hyperbolicity region but are also affected by non-physical sub-shocks in the continuous shock-structure problem if the shock velocity exceeds a critical value. Amore recently suggested closure theory based on the maximum entropy principle yields symmetric hyperbolic moment equations. However, if moments higher than second order are included, the computational demand of this closure can be overwhelming. Additionally, it was shown for the 5-moment system that the closing flux becomes singular on a subset of moments including the equilibrium state.Motivated by recent promising results of closed-form, singular closures based on the maximum entropy approach, we study regularized singular closures that become singular on a subset of moments when the regularizing terms are removed. In order to study some implications of singular closures, we use a recently proposed explicit closure for the 5-moment equations. We show that this closure theory results in a hyperbolic system that can mitigate the problem of sub-shocks independent of the shock wave velocity and handle strongly non-equilibrium gas flows.


2010 ◽  
Vol 365 (1545) ◽  
pp. 1333-1334 ◽  
Author(s):  
Leonid M. Martyushev

The overwhelming majority of maximum entropy production applications to ecological and environmental systems are based on thermodynamics and statistical physics. Here, we discuss briefly maximum entropy production principle and raises two questions: (i) can this principle be used as the basis for non-equilibrium thermodynamics and statistical mechanics and (ii) is it possible to ‘prove’ the principle? We adduce one more proof which is most concise today.


Author(s):  
Rodrigo Cofre ◽  
Leonardo Videla ◽  
Fernando Rosas

Although most biological processes are characterized by a strong temporal asymmetry, several popular mathematical models neglect this issue. Maximum entropy methods provide a principled way of addressing time irreversibility, which leverages powerful results and ideas from the3literature of non-equilibrium statistical mechanics. This article provides a comprehensive overview of these issues, with a focus in the case of spike train statistics. We provide a detailed account of the5mathematical foundations and work out examples to illustrate the key concepts and results from non-equilibrium statistical mechanics


Sign in / Sign up

Export Citation Format

Share Document