Large Amplitude Limit Cycle Oscillations of Fully Coupled Fluid-Structure Interactions

Author(s):  
Jurgen Seidel ◽  
Timothy M. Siefers ◽  
Casey P. Fagley ◽  
Thomas E. McLaughlin
Author(s):  
Ashkan Nazari ◽  
Lu Chen ◽  
Francine Battaglia ◽  
Saied Taheri

Hydroplaning is a phenomenon which occurs when a layer of water between the tire contact patch and pavement pushes the tire upward. The tire detaches from the pavement, preventing it from providing sufficient forces and moments for the vehicle to respond to driver’s control inputs such as breaking, acceleration and steering. This work is mainly focused on the tire and its interaction with the pavement to address hydroplaning. Fluid Structure Interactions (FSI) between the tire-water-road surfaces are investigated through two approaches. In the first approach, the coupled Eulerian-Lagrangian (CEL) formulation was used. The drawback associated with the CEL method is the laminar assumption and that the behavior of the fluid at length scales smaller than the smallest element size is not captured. As a result, in the second approach, a new Computational Fluid Dynamics (CFD) Fluid Structure Interaction (FSI) model utilizing the shear-stress transport k-ω model and the two-phase flow of water and air, was developed that improves the predictions with real hydroplaning scenarios. Review of the public literature shows that although FEM and CFD computational platforms have been applied together to study tire hydroplaning, developing the tire-surrounding fluid flow CFD model using Star-CCM+ has not been done. This approach, which was developed during this research, is explained in details and the results of hydroplaning speed and cornering force from the FSI simulations are presented and validated using the data from literature.


2020 ◽  
Vol 98 ◽  
pp. 103131
Author(s):  
Benjamin Kirschmeier ◽  
Graham Pash ◽  
Zachary Gianikos ◽  
Albert Medina ◽  
Ashok Gopalarathnam ◽  
...  

2009 ◽  
Vol 25 (4) ◽  
pp. 451-463
Author(s):  
J.-C. Cheng

ABSTRACTThe transonic tail flutter and flap buzz under the wing-flap-tail configurations are analyzed utilizing a dynamic grid capability of unstructured Euler solver coupled with an appropriate aeroelastic solver. From the results, the presence of a forewing, either stationary or oscillating, has significant effect on the tail flutter characteristics. In particular, the tail motion may be in resonance with the oscillating wing before the onset of flutter, which is dangerous to the tail structure because of the large amplitude oscillations. Besides, a complicated aerodynamic and aeroelastic interference of the tail have been found due to the unsteady disturbance which is a strong variability of flow structure induced by the buzz of the flap. In the high transonic flow regime, the flap buzz with limit-cycle oscillations does occur, and the influence induced by the tail is not important. The increasing restoring force at the pivot where the flap joints with the wing will reduce the flap oscillations that improves the effect of the flap buzz.


Author(s):  
Huade Tan ◽  
John Goetz ◽  
Andre´s Tovar ◽  
John E. Renaud

A first order structural optimization problem is examined to evaluate the effects of structural geometry on blast energy transfer in a fully coupled fluid structure interaction problem. The fidelity of the fluid structure interaction simulation is shown to yield significant insights into the blast mitigation problem not captured in similar empirically based blast models. An emphasis is placed on the accuracy of simulating such fluid structure interactions and its implications on designing continuum level structures. Higher order design methodologies and algorithms are discussed for the application of such fully coupled simulations on vehicle level optimization problems.


Sign in / Sign up

Export Citation Format

Share Document