Aeroelastic flutter flight test data analysis using a high order dynamic mode decomposition approach

2019 ◽  
Author(s):  
Carlos Mendez ◽  
Soledad Le Clainche ◽  
José M. Vega ◽  
Ruben Moreno-Ramos ◽  
Paul F. Taylor
2015 ◽  
Vol 27 (2) ◽  
pp. 025113 ◽  
Author(s):  
Florimond Guéniat ◽  
Lionel Mathelin ◽  
Luc R. Pastur

Author(s):  
S. Abolfazl. Mokhtari ◽  
Mehdi. Sabzehparvar

Identification of aircraft flight dynamic modes has been implemented by adopting highly nonlinear flight test data. This paper presents a new algorithm for identification of the flight dynamic modes based on Hilbert–Huang transform (HHT) due to its superior potential capabilities in nonlinear and nonstationary signal analysis. Empirical mode decomposition and ensemble empirical mode decomposition (EEMD) are the two common methods that apply the HHT transform for decomposition of the complex signals into instantaneous mode frequencies; however, experimentally, the EMD faces the problem of “mode mixing,” and EEMD faces with the signal precise reconstruction, which leads to imprecise results in the estimation of flight dynamic modes. In order to overcome (handle) this deficiency, an improved EEMD (IEEMD) algorithm for processing of the complex signals that originate from flight data record was introduced. This algorithm disturbing the original signal using white Gaussian noise, IEEMD, is capable of making a precise reconstruction of the original signal. The second improvement is that IEEMD performs signal decomposition with fewer number of iterations and less complexity order rather than EEMD. This algorithm has been applied to aircraft spin maneuvers flight test data. The results show that implication of IEEMD algorithm on the test data obtained more precise signal extractions with fewer iterations in comparison to EEMD method. The signal is reconstructed by summing the flight modes with more accuracy respect to the EEMD. The IEEMD requires a smaller ensemble size, which results in saving of a significant computational cost.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6513
Author(s):  
Nassir Cassamo ◽  
Jan-Willem van Wingerden

The high dimensions and governing non-linear dynamics in wind farm systems make the design of numerical optimal controllers computationally expensive. A possible pathway to circumvent this challenge lies in finding reduced order models which can accurately embed the existing non-linearities. The work presented here applies the ideas motivated by non-linear dynamical systems theory—the Koopman Operator—to an innovative algorithm in the context of wind farm systems—Input Output Dynamic Mode Decomposition (IODMD)—to improve on the ability to model the aerodynamic interaction between wind turbines in a wind farm and uncover insights into the existing dynamics. It is shown that a reduced order linear state space model can reproduce the downstream turbine generator power dynamics and reconstruct the upstream turbine wake. It is further shown that the fit can be improved by judiciously choosing the Koopman observables used in the IODMD algorithm without jeopardizing the models ability to rebuild the turbine wake. The extensions to the IODMD algorithm provide an important step towards the design of linear reduced order models which can accurately reproduce the dynamics in a wind farm.


2019 ◽  
Vol 32 (11) ◽  
pp. 2408-2421 ◽  
Author(s):  
Mengmeng WU ◽  
Zhonghua HAN ◽  
Han NIE ◽  
Wenping SONG ◽  
Soledad Le CLAINCHE ◽  
...  

Author(s):  
Nassir Cassamo ◽  
Jan-Willem van Wingerden

The high dimensions and governing non linear dynamics in wind farm systems make the design of numerical optimal controllers computationally expensive. A possible pathway to circumvent this challenge lies in finding reduced order models which can accurately embed the existing non linearities. The work here presented applies the ideas motivated by non linear dynamical systems theory - the Koopman Operator - to an innovative algorithm in the context of wind farm systems - Input Output Dynamic Mode Decomposition - to improve on the ability to model the aerodynamic interaction between wind turbines in a wind farm and uncover insights into the existing dynamics. It is shown that a reduced order linear state space model can reproduce the downstream turbine generator power dynamics and reconstruct the upstream turbine wake. It is further shown that the fit can be improved by judiciously choosing the Koopman observables used in the IODMD algorithm without jeopardizing the models ability to rebuild the turbine wake. The extensions to the IODMD algorithm provide an important step towards the design of linear reduced order models which can accurately reproduce the dynamics in a wind farm.


Sign in / Sign up

Export Citation Format

Share Document