temporal series
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 51)

H-INDEX

14
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Layrson J. M. Gonçalves ◽  
Simone M. S. C. Coelho ◽  
Paulo Y. Kubota ◽  
Dayana C. Souza

Abstract. Observational meteorological data from the field experiment GoAmazon 2014/15 and data from numerical simulations with the Cloud-Resolving Model (CRM) called System for Atmospheric Modeling (SAM) are used to study the interaction between the cloudiness-radiation and the atmospheric dynamics and thermodynamics variables for a site located in the central Amazon region (−3.2° S, −60.6° W) during the wet and dry periods. The main aims are to (a) analyze the temporal series of the integrated cloud fraction, precipitation rate and downward shortwave flux; and (b) to determine the relationship between the integrated cloud fraction, radiative fluxes, and large-scale variable anomalies as a function of the previous day's average. The temporal series of the integrated cloud fraction, precipitation rate and downward shortwave flux from SAMS simulations showed physical consistency with the observations from GoAmazon 2014/15. Shallow and deep convection clouds show to have meaningful impact on radiation fluxes in the Amazon region during wet and dry periods. Anomalies of large-scale variables (relative to the previous day's average) are physically associated with cloud formation, evolution and dissipation. SAM consistently simulated these results, where the cloud fraction vertical profile shows a pattern very close to the observed data (cloud type). Additionally, the integrated cloud fraction and large-scale variable anomalies, as a function of the previous day's average, have a good correlation. These results suggest that the memory of the large-scale dynamics from previous day can be used to estimate the clouds fraction. As well as the water content, which is a variable of the cloud itself. In general, the SAM satisfactorily simulated the interaction between cloud-radiation and dynamic and thermodynamic variables of the atmosphere during the periods of this study, being indicated to obtain atmospheric variables that are impossible to obtain in an observational way.


2021 ◽  
Author(s):  
Ginno Millán

An extension of the models used to generate fractal traffic flows is presented by means of the formulation of a model that considers the use of one-dimensional chaotic maps. Based on the disaggregation of the temporal series generated by the model, a valid explanation of behavior of the values of Hurst exponent is proposed and the feasibility of their control from the parameters of the proposed model is shown.


2021 ◽  
pp. 100543
Author(s):  
A. Bucci ◽  
L. Ippoliti ◽  
P. Valentini ◽  
S. Fontanella

2021 ◽  
Author(s):  
Ginno Millán

An extension of the models used to generate fractal traffic flows is presented by means of the formulation of a model that considers the use of one-dimensional chaotic maps. Based on the disaggregation of the temporal series generated by the model, a valid explanation of behavior of the values of Hurst exponent is proposed and the feasibility of their control from the parameters of the proposed model is shown.


Chemosphere ◽  
2021 ◽  
pp. 131807
Author(s):  
Hui Li ◽  
Yongliang Ma ◽  
Fengkui Duan ◽  
Tao Huang ◽  
Takashi Kimoto ◽  
...  

Author(s):  
E. Fornieles Lopez ◽  
G. Brunel ◽  
N. Devaux ◽  
F. Rancon ◽  
L. Pichon ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 2236
Author(s):  
Piotr Kosiuczenko

The analysis of temporal series—in particular, analysis of multisensor data—is a complex problem. It depends on the application domain, the way the data have to be used, and sensors available, among other factors. Various models, algorithms, and technologies have been designed for this goal. Temporal logics are used to describe temporal properties of systems. The properties may specify the occurrence and the order of events in time, recurring patterns, complex behaviors, and processes. In this paper, a new interval logic, called duration calculus for functions (DC4F), is proposed for the specification of temporal series corresponding to multisensor data. DC4F is a natural extension of the well-known duration calculus, an interval temporal logic for the specification of process duration. The adequacy of the proposed logic is analyzed in the case of multisensor data concerning volcanic eruption monitoring. It turns out that the relevant behavior concerns time intervals, not only accumulated history as it is described in other kinds of temporal logics. The examples analyzed demonstrate that a description language is required to specify time series of various kind relative to time intervals. The duration calculus cannot be successfully applied for this task. The proposed calculus allows one to specify temporal series and complex interval-dependent behaviors, and to evaluate the corresponding data within a unifying logical framework. It allows to formulate hypotheses concerning volcano eruption phenomena. However, the expressivity of DC4F comes at the cost of its decidability.


2021 ◽  
Author(s):  
Ginno Millán

This paper presents an extension of the models used to generate fractal traffic flows in high-speed computer networks by means of the formulation of a model that considers the use of one-dimensional chaotic maps. Based on the disaggregation of the temporal series generated, a valid explanation of behavior of the values of Hurst exponent is proposed and the feasibility of their control from the parameters of the proposed model is shown.


2021 ◽  
Author(s):  
Ginno Millán

This paper presents an extension of the models used to generate fractal traffic flows in high-speed computer networks by means of the formulation of a model that considers the use of one-dimensional chaotic maps. Based on the disaggregation of the temporal series generated, a valid explanation of behavior of the values of Hurst exponent is proposed and the feasibility of their control from the parameters of the proposed model is shown.


Sign in / Sign up

Export Citation Format

Share Document