Towards counter-rotating open rotor noise reduction via radiation efficiency considerations

Author(s):  
Csaba Horváth ◽  
Bence Fenyvesi ◽  
Bálint Kocsis ◽  
Michael Quaglia ◽  
Stéphane Moreau ◽  
...  
2021 ◽  
pp. 1-26
Author(s):  
Tianxiao Yang ◽  
Wenjun Yu ◽  
Dong Liang ◽  
Xiang He ◽  
Zhenguo Zhao

Abstract In this paper, a novel Contra-Rotating Open Rotor (CROR) noise reduction methodology based upon the anhedral blade tip applied to the front blade is developed. Results indicate that anhedral blade tip can provide noise reduction over 60 deg. polar angle range in both upstream and downstream areas at takeoff condition. The noise reduction becomes more significant as the lean angle of anhedral blade tip increases, and the maximum noise reduction is over 4 dB. Further analysis shows that anhedral blade tip decreases the strength and size of blade tip vortex shed from the front blade, and reduces its interaction with the rear rotor, which decreases the fluctuation of loading acting on the rear rotor and its loading noise. Furthermore, the anhedral blade tip does not have strong effect on the aerodynamic performance of CROR at cruise.


Author(s):  
Benjamin Yen ◽  
Yusuke Hioka

Abstract A method to locate sound sources using an audio recording system mounted on an unmanned aerial vehicle (UAV) is proposed. The method introduces extension algorithms to apply on top of a baseline approach, which performs localisation by estimating the peak signal-to-noise ratio (SNR) response in the time-frequency and angular spectra with the time difference of arrival information. The proposed extensions include a noise reduction and a post-processing algorithm to address the challenges in a UAV setting. The noise reduction algorithm reduces influences of UAV rotor noise on localisation performance, by scaling the SNR response using power spectral density of the UAV rotor noise, estimated using a denoising autoencoder. For the source tracking problem, an angular spectral range restricted peak search and link post-processing algorithm is also proposed to filter out incorrect location estimates along the localisation path. Experimental results show the proposed extensions yielded improvements in locating the target sound source correctly, with a 0.0064–0.175 decrease in mean haversine distance error across various UAV operating scenarios. The proposed method also shows a reduction in unexpected location estimations, with a 0.0037–0.185 decrease in the 0.75 quartile haversine distance error.


2014 ◽  
Vol 118 (1208) ◽  
pp. 1125-1135 ◽  
Author(s):  
M. J. Kingan

Abstract The purpose of this paper is to describe the current status of open rotor noise prediction methods and to highlight future challenges in this area. A number of analytic and numerical methods are described which can be used for predicting ‘isolated’ and ‘installed’ open rotor tonal noise. Broadband noise prediction methods are also described and it is noted that further development and validation of the current models is required. The paper concludes with a discussion of the analytical methods which are used to assess the acoustic data collected during the high-speed wind-tunnel testing of a model scale advanced open rotor rig.


AIAA Journal ◽  
2014 ◽  
Vol 52 (8) ◽  
pp. 1810-1817 ◽  
Author(s):  
Csaba Horváth ◽  
Edmane Envia ◽  
Gary G. Podboy

Author(s):  
Michaël Leborgne ◽  
Timothée Lonfils ◽  
Ingrid Lepot

This paper focuses on the development and exploitation of a multi-disciplinary, optimization-assisted, design methodology for contra-rotating open-rotors. The design procedure relies on a two-step approach. An aero-mechanical optimization is first performed to generate a geometry with good performances over several high-speed points representative of a mission. This geometry is subsequently used as the baseline of an aero-mechanical-acoustic optimization focusing on interaction noise reduction at Cutback and Sideline low-speed points. In terms of design parameters, both rotors are modified for the first phase but only the upper part of the front rotor is altered for the noise minimization. A fully-automatic high-fidelity aero-mechanical-acoustic computational chain with fluid-structure coupling is exploited in combination with evolutionary algorithms assisted by surrogate models for the constrained-optimization process. The acoustic footprint is estimated by a simplified but fast and relevant formulation combining an unsteady lifting-line and an acoustic propagation method. The best geometry of the first design gains 1.2pt in weighted efficiency while respecting all the aero-mechanical constraints. The acoustic optimization shows that noise reduction at Sideline and Cutback points is strongly antagonistic. However, significant Sideline noise reduction from 3.5 to 5.5dB depending on the harmonics is achieved while maintaining Cutback noise and without major degradation of high-speed efficiency.


1969 ◽  
Author(s):  
Harry Sternfeld ◽  
Robert H. Spencer
Keyword(s):  

AIAA Journal ◽  
2019 ◽  
Vol 57 (5) ◽  
pp. 1930-1940 ◽  
Author(s):  
Lukas Dürrwächter ◽  
Manuel Keßler ◽  
Ewald Krämer

Sign in / Sign up

Export Citation Format

Share Document