Additive Manufacturing and Hot-fire Testing of Liquid Rocket Channel Wall Nozzles Using Blown Powder Directed Energy Deposition Inconel 625 and JBK-75 Alloys

Author(s):  
Paul R. Gradl ◽  
Christopher S. Protz ◽  
Tal Wammen
2021 ◽  
Vol 53 ◽  
pp. 368-374
Author(s):  
Kandice S.B. Ribeiro ◽  
Fábio E. Mariani ◽  
Henrique T. Idogava ◽  
Gustavo C. da Silva ◽  
Zilda C. Silveira ◽  
...  

2021 ◽  
Vol 39 ◽  
pp. 101845
Author(s):  
J.P. Kelly ◽  
J.W. Elmer ◽  
F.J. Ryerson ◽  
J.R.I. Lee ◽  
J.J. Haslam

2019 ◽  
Vol 161 ◽  
pp. 86-94 ◽  
Author(s):  
James C. Haley ◽  
Baolong Zheng ◽  
Umberto Scipioni Bertoli ◽  
Alexander D. Dupuy ◽  
Julie M. Schoenung ◽  
...  

Author(s):  
Basil Paudel ◽  
Garrett Marshall ◽  
Scott M. Thompson

Abstract The effects of Ti-6Al-4V part size on its temperature distribution during the blown-powder directed energy deposition (DED) process was investigated through dual-thermographic monitoring and a unique modeling technique. Results demonstrate that the duration of dwell times presented to be a significant contributing factor affecting the rate at which a steady-state temperature field is achieved. As a result, the longer wall took significantly more layers/time to achieve a uniform temperature profile within the wall. Maximum and average melt pool temperatures appear to be near independent of part size at a steady state. Finite element simulation results showed that a quasi-steady melt pool temperature may be unique to a layer, especially during earlier cladding process near the substrate and that the layer-wise steady melt pool was achieved within the first few seconds of track scanning. A proposed fin modeling-based temperature distribution was found to predict the thermal profile in a ‘substrate affected zone’ (SAZ) along the scan direction within 5%. A method to predict the onset of the SAZ has also been proposed. Process parameters used for the DED of component volumes are not necessarily optimal for thin-walled structures due to significantly less thermal capacity.


2020 ◽  
Vol 109 (5-6) ◽  
pp. 1261-1274 ◽  
Author(s):  
Tan Pan ◽  
Xinchang Zhang ◽  
Tomoya Yamazaki ◽  
Austin Sutton ◽  
Wenyuan Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document