Investigation of Flow Past Rotating Cylinder using Transitional RANS models for different Mesh Motion Methodologies

2020 ◽  
Author(s):  
Arijit Dasgupta ◽  
Harish Gopalan ◽  
Dominic Chandar
2018 ◽  
Vol 860 ◽  
pp. 739-766 ◽  
Author(s):  
Rémi Bourguet

The flow-induced vibrations of an elastically mounted circular cylinder, free to oscillate in an arbitrary direction and forced to rotate about its axis, are examined via two- and three-dimensional simulations, at a Reynolds number equal to 100, based on the body diameter and inflow velocity. The behaviour of the flow–structure system is investigated over the entire range of vibration directions, defined by the angle $\unicode[STIX]{x1D703}$ between the direction of the current and the direction of motion, a wide range of values of the reduced velocity $U^{\star }$ (inverse of the oscillator natural frequency) and three values of the rotation rate (ratio between the cylinder surface and inflow velocities), $\unicode[STIX]{x1D6FC}\in \{0,1,3\}$, in order to cover the reference non-rotating cylinder case, as well as typical slow and fast rotation cases. The oscillations of the non-rotating cylinder ($\unicode[STIX]{x1D6FC}=0$) develop under wake-body synchronization or lock-in, and their amplitude exhibits a bell-shaped evolution, typical of vortex-induced vibrations (VIV), as a function of $U^{\star }$. When $\unicode[STIX]{x1D703}$ is increased from $0^{\circ }$ to $90^{\circ }$ (or decreased from $180^{\circ }$ to $90^{\circ }$), the bell-shaped curve tends to monotonically increase in width and magnitude. For all angles, the flow past the non-rotating body is two-dimensional with formation of two counter-rotating spanwise vortices per cycle. The behaviour of the system remains globally the same for $\unicode[STIX]{x1D6FC}=1$. The principal effects of the slow rotation are a slight amplification of the VIV-like responses and widening of the vibration windows, as well as a limited asymmetry of the responses and forces about the symmetrical configuration $\unicode[STIX]{x1D703}=90^{\circ }$. The impact of the fast rotation ($\unicode[STIX]{x1D6FC}=3$) is more pronounced: VIV-like responses persist over a range of $\unicode[STIX]{x1D703}$ but, outside this range, the system is found to undergo a transition towards galloping-like oscillations characterised by amplitudes growing unboundedly with $U^{\star }$. A quasi-steady modelling of fluid forcing predicts the emergence of galloping-like responses as $\unicode[STIX]{x1D703}$ is varied, which suggests that they could be mainly driven by the mean flow. It, however, appears that flow unsteadiness and body motion remain synchronised in this vibration regime where a variety of multi-vortex wake patterns are uncovered. The interaction with flow dynamics results in deviations from the quasi-steady prediction. The successive steps in the evolution of the vibration amplitude versus $U^{\star }$, linked to wake pattern switch, are not captured by the quasi-steady approach. The flow past the rapidly-rotating, vibrating cylinder becomes three-dimensional over an interval of $\unicode[STIX]{x1D703}$ including the in-line oscillation configuration, with only a minor effect on the system behaviour.


AIAA Journal ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 1670-1681 ◽  
Author(s):  
Benzi John ◽  
Xiao-Jun Gu ◽  
Robert W. Barber ◽  
David R. Emerson

2015 ◽  
Vol 57 ◽  
pp. 314-330 ◽  
Author(s):  
A. Rao ◽  
M.C. Thompson ◽  
T. Leweke ◽  
K. Hourigan
Keyword(s):  

2017 ◽  
Vol 29 (1) ◽  
pp. 016101 ◽  
Author(s):  
A. R. Teymourtash ◽  
S. E. Salimipour

2012 ◽  
Vol 36 (1) ◽  
pp. 379-398 ◽  
Author(s):  
S.J. Karabelas ◽  
B.C. Koumroglou ◽  
C.D. Argyropoulos ◽  
N.C. Markatos

2016 ◽  
Author(s):  
Benzi John ◽  
Xiao-Jun Gu ◽  
Robert W. Barber ◽  
David R. Emerson

2000 ◽  
Vol 411 ◽  
pp. 213-232 ◽  
Author(s):  
E. V. BULDAKOV ◽  
S. I. CHERNYSHENKO ◽  
A. I. RUBAN

The subject of this study is a steady two-dimensional incompressible flow past a rapidly rotating cylinder with suction. The rotation velocity is assumed to be large enough compared with the cross-flow velocity at infinity to ensure that there is no separation. High-Reynolds-number asymptotic analysis of incompressible Navier–Stokes equations is performed. Prandtl's classical approach of subdividing the flow field into two regions, the outer inviscid region and the boundary layer, was used earlier by Glauert (1957) for analysis of a similar flow without suction. Glauert found that the periodicity of the boundary layer allows the velocity circulation around the cylinder to be found uniquely. In the present study it is shown that the periodicity condition does not give a unique solution for suction velocity much greater than 1/Re. It is found that these non-unique solutions correspond to different exponentially small upstream vorticity levels, which cannot be distinguished from zero when considering terms of only a few powers in a large Reynolds number asymptotic expansion. Unique solutions are constructed for suction of order unity, 1/Re, and 1/√Re. In the last case an explicit analysis of the distribution of exponentially small vorticity outside the boundary layer was carried out.


Sign in / Sign up

Export Citation Format

Share Document