Elastic-Plastic Fracture Mechanics Guidance and Analysis Validation

2022 ◽  
Author(s):  
Christopher Sagrillo ◽  
Leland Shimizu ◽  
Vinay K. Goyal
2018 ◽  
Vol 148 ◽  
pp. 177-187 ◽  
Author(s):  
Markus Alfreider ◽  
Darjan Kozic ◽  
Otmar Kolednik ◽  
Daniel Kiener

Author(s):  
Adolfo Arrieta-Ruiz ◽  
Eric Meister ◽  
Stéphane Vidard

Structural integrity of the Reactor Pressure Vessel (RPV) is one of the main concerns regarding safety and lifetime of Nuclear Power Plants (NPP) since this component is considered as not reasonably replaceable. Fast fracture risk is the main potential damage considered in the integrity assessment of RPV. In France, deterministic integrity assessment for RPV vis-à-vis the brittle fracture risk is based on the crack initiation stage. As regards the core area in particular, the stability of an under-clad postulated flaw is currently evaluated under a Pressurized Thermal Shock (PTS) through a dedicated fracture mechanics simplified method called “beta method”. However, flaw stability analyses are also carried-out in several other areas of the RPV. Thence-forward performing uniform simplified inservice analyses of flaw stability is a major concern for EDF. In this context, 3D finite element elastic-plastic calculations with flaw modelling in the nozzle have been carried out recently and the corresponding results have been compared to those provided by the beta method, codified in the French RSE-M code for under-clad defects in the core area, in the most severe events. The purpose of this work is to validate the employment of the core area fracture mechanics simplified method as a conservative approach for the under-clad postulated flaw stability assessment in the complex geometry of the nozzle. This paper presents both simplified and 3D modelling flaw stability evaluation methods and the corresponding results obtained by running a PTS event. It shows that the employment of the “beta method” provides conservative results in comparison to those produced by elastic-plastic calculations for the cases here studied.


2019 ◽  
Vol 341 ◽  
pp. 124-136 ◽  
Author(s):  
Chen Mingya ◽  
Yu Weiwei ◽  
Xue Fei ◽  
Ku Francis ◽  
Chen Zhilin ◽  
...  

Author(s):  
S. J. Lewis ◽  
C. E. Truman ◽  
D. J. Smith

This article describes an investigation into the ability of a number of different fracture mechanics approaches to predict failure by brittle fracture under general elastic/plastic loading. Data obtained from C(T) specimens of A508 ferritic steel subjected to warm pre-stressing and side punching were chosen as such prior loadings produce considerably non-proportionality in the resulting stress states. In addition, failure data from a number of round notched bar specimens of A508 steel were considered for failure with and without prior loading. Failure prediction, based on calibration to specimens in the as received state, was undertaken using two methods based on the J integral and two based on local approach methodologies.


1973 ◽  
Vol 5 (4) ◽  
pp. 1019-1022 ◽  
Author(s):  
James R. Rice

Sign in / Sign up

Export Citation Format

Share Document