Booster Dispersion Area Management through Aerodynamic Guidance and Control

2022 ◽  
Author(s):  
Marco Sagliano ◽  
David Seelbinder ◽  
Stephan Theil ◽  
Sunghyuck Im ◽  
Junseong Lee ◽  
...  
2005 ◽  
Vol 13 (4) ◽  
pp. 329-356 ◽  
Author(s):  
Christoph Meier ◽  
Jörn Jakobi ◽  
Paul Adamson ◽  
Sandra Lozito ◽  
Lynne Martin

Author(s):  
Bin Zhao ◽  
Zhenxin Feng ◽  
Jianguo Guo

The problem of the integrated guidance and control (IGC) design for strap-down missile with the field-of-view (FOV) constraint is solved by using the integral barrier Lyapunov function (iBLF) and the sliding mode control theory. Firstly, the nonlinear and uncertainty state equation with non-strict feedback form for IGC design is derived by using the strap-down decoupling strategy. Secondly, a novel adaptive finite time disturbance observer is proposed to estimate the uncertainties based on an improved adaptive gain super twisting algorithm. Thirdly, the special time-varying sliding variable is designed and the iBLF is employed to handle the problem of FOV constraint. Theoretical derivation and simulation show that the IGC system is globally uniformly ultimately bounded and the FOV angle constraint is also guaranteed not only during the reaching phase but also during the sliding mode phase.


Sign in / Sign up

Export Citation Format

Share Document