Budgets of Reynolds Stresses and Turbulent Heat Flux for Hypersonic Turbulent Boundary Layers Subject to Pressure Gradients

2022 ◽  
Author(s):  
Gary L. Nicholson ◽  
Junji Huang ◽  
Lian Duan ◽  
Meelan M. Choudhari ◽  
Bryan Morreale ◽  
...  
2014 ◽  
Vol 753 ◽  
pp. 360-401 ◽  
Author(s):  
R. Vicquelin ◽  
Y. F. Zhang ◽  
O. Gicquel ◽  
J. Taine

AbstractThe role of radiative energy transfer in turbulent boundary layers is carefully analysed, focusing on the effect on temperature fluctuations and turbulent heat flux. The study is based on direct numerical simulations (DNS) of channel flows with hot and cold walls coupled to a Monte-Carlo method to compute the field of radiative power. In the conditions studied, the structure of the boundary layers is strongly modified by radiation. Temperature fluctuations and turbulent heat flux are reduced, and new radiative terms appear in their respective balance equations. It is shown that they counteract turbulence production terms. These effects are analysed under different conditions of Reynolds number and wall temperature. It is shown that collapsing of wall-scaled profiles is not efficient when radiation is considered. This drawback is corrected by the introduction of a radiation-based scaling. Finally, the significant impact of radiation on turbulent heat transfer is studied in terms of the turbulent Prandtl number. A model for this quantity, based on the new proposed scaling, is developed and validated.


2021 ◽  
Author(s):  
Scott J. Peltier ◽  
Brian E. Rice ◽  
Ethan Johnson ◽  
Venkateswaran Narayanaswamy ◽  
Marvin E. Sellers

1983 ◽  
Vol 27 (03) ◽  
pp. 147-157 ◽  
Author(s):  
A. J. Smits ◽  
N. Matheson ◽  
P. N. Joubert

This paper reports the results of an extensive experimental investigation into the mean flow properties of turbulent boundary layers with momentum-thickness Reynolds numbers less than 3000. Zero pressure gradient and favorable pressure gradients were studied. The velocity profiles displayed a logarithmic region even at very low Reynolds numbers (as low as Rθ = 261). The results were independent of the leading-edge shape, and the pin-type turbulent stimulators performed well. It was found that the shape and Clauser parameters were a little higher than the correlation proposed by Coles [10], and the skin friction coefficient was a little lower. The skin friction coefficient behavior could be fitted well by a simple power-law relationship in both zero and favorable pressure gradients.


Author(s):  
Christoph Wenzel ◽  
Johannes M. F. Peter ◽  
Björn Selent ◽  
Matthias B. Weinschenk ◽  
Ulrich Rist ◽  
...  

1994 ◽  
Vol 116 (3) ◽  
pp. 405-416 ◽  
Author(s):  
J. Kim ◽  
T. W. Simon ◽  
M. Kestoras

An experimental investigation of transition on a flat-plate boundary layer was performed. Mean and turbulence quantities, including turbulent heat flux, were sampled according to the intermittency function. Such sampling allows segregation of the signal into two types of behavior—laminarlike and turbulentlike. Results show that during transition these two types of behavior cannot be thought of as separate Blasius and fully turbulent profiles, respectively. Thus, simple transition models in which the desired quantity is assumed to be an average, weighted on intermittency, of the laminar and fully turbulent values may not be entirely successful. Deviation of the flow identified as laminarlike from theoretical laminar behavior is due to a slow recovery after the passage of a turbulent spot, while deviation of the flow identified as turbulentlike from fully turbulent characteristics is possibly due to an incomplete establishment of the fully turbulent power spectral distribution. Measurements were taken for two levels of free-stream disturbance—0.32 and 1.79 percent. Turbulent Prandtl numbers for the transitional flow, computed from measured shear stress, turbulent heat flux, and mean velocity and temperature profiles, were less than unity.


Author(s):  
Ralph J. Volino ◽  
Terrence W. Simon

A technique called “octant analysis” was used to examine the eddy structure of turbulent and transitional heated boundary layers on flat and curved surfaces. The intent was to identify important physical processes that play a role in boundary layer transition on flat and concave surfaces. Octant processing involves the partitioning of flow signals into octants based on the instantaneous signs of the fluctuating temperature, t′; streamwise velocity, u′; and cross-stream velocity, v′. Each octant is associated with a particular eddy motion. For example, u′<0, v′>0, t′>0 is associated with an ejection or “burst” of warm fluid away from a heated wall. Within each octant, the contribution to various quantities of interest (such as the turbulent shear stress, −u′v′, or the turbulent heat flux, v′t′) can be computed. By comparing and contrasting the relative contributions from each octant, the importance of particular types of motion can be determined. If the data within each octant is further segregated based on the magnitudes of the fluctuating components so that minor events are eliminated, the relative importance of particular types of motion to the events that are important can also be discussed. In fully-developed, turbulent boundary layers along flat plates, trends previously reported in the literature were confirmed. A fundamental difference was observed in the octant distribution between the transitional and fully-turbulent boundary layers, however, showing incomplete mixing and a lesser importance of small scales in the transitional boundary layer. Such observations were true on both flat and concave walls. The differences are attributed to incomplete development of the turbulent kinetic energy cascade in transitional flows. The findings have potential application to modelling, suggesting the utility of incorporating multiple length scales in transition models.


Sign in / Sign up

Export Citation Format

Share Document