Atomistic Multi-Lattice Kinetic Monte Carlo (KMC) Modeling of Hyperthermal Oxidation of Multi-Layer Graphene

2022 ◽  
Author(s):  
Sharon Edward ◽  
Harley Johnson
Author(s):  
Jing-hua Guo ◽  
Jin-Xiang Liu ◽  
Hongbo Wang ◽  
Haiying Liu ◽  
Gang Chen

In this work, combining the first-principles calculations with kinetic Monte Carlo (KMC) simulations, we constructed an irregular carbon bridge on the graphene surface and explored the process of H migration...


AIP Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 045306
Author(s):  
Georg Daniel Förster ◽  
Thomas D. Swinburne ◽  
Hua Jiang ◽  
Esko Kauppinen ◽  
Christophe Bichara

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 745
Author(s):  
Dimitrios Meimaroglou ◽  
Sandrine Hoppe ◽  
Baptiste Boit

The kinetics of the hydrolysis and polycondensation reactions of saccharides have made the subject of numerous studies, due to their importance in several industrial sectors. The present work, presents a novel kinetic modeling framework that is specifically well-suited to reacting systems under strict moisture control that favor the polycondensation reactions towards the formation of high-degree polysaccharides. The proposed model is based on an extended and generalized kinetic scheme, including also the presence of polyols, and is formulated using two different numerical approaches, namely a deterministic one in terms of the method of moments and a stochastic kinetic Monte Carlo approach. Accordingly, the most significant advantages and drawbacks of each technique are clearly demonstrated and the most fitted one (i.e., the Monte Carlo method) is implemented for the modeling of the system under different conditions, for which experimental data were available. Through these comparisons it is shown that the model can successfully follow the evolution of the reactions up to the formation of polysaccharides of very high degrees of polymerization.


Sign in / Sign up

Export Citation Format

Share Document