An Examination of Unmanned Aircraft Systems Pilots’ Interaction with Air Traffic Control while Responding to Detect and Avoid Conflicts

2015 ◽  
Vol 23 (2-3) ◽  
pp. 113-135 ◽  
Author(s):  
Lisa Fern ◽  
R. Conrad Rorie
Author(s):  
Yuri S. Tsyplenkov ◽  
◽  

In order to prevent collisions in conditions of the constantly increasing intensity of flights of aircraft of various types and purposes, it is proposed to develop a small-sized airborne radar station, compatible with the existing air traffic control system (ATC) and with the onboard systems of other aircraft to ensure flight safety.


Author(s):  
Asma Tabassum ◽  
William Semke

An analysis of the performance of Automatic Dependent Surveillance-Broadcast (ADS-B) data received from the Grand Forks, North Dakota International Airport was carried out in this study. The purpose was to understand the vulnerabilities of Universal Access Transceiver (UAT) ADS-B system and recognize the effects on present and future Air Traffic Control (ATC) operation. The Federal Aviation Administration (FAA) mandated all the General Aviation aircraft to be equipped with ADS-B. The aircraft flying within United States and below the transition altitude (18,000 feet) are more likely to install an UAT ADS-B. At present unmanned aircraft systems (UAS) and autonomous air traffic control (ATC) towers are being integrated into the aviation industry and UAT ADS-B is a basic sensor for both class 1 and class 2 Detect and Avoid (DAA) systems. As a fundamental component of future surveillance system, the anomalies and vulnerabilities of ADS-B system need to be identified to enable a fully utilized airspace with enhanced situational awareness. The data received was archived in GDL-90 format, which was parsed into readable data. The anomaly detection of ADS-B messages was based on the FAA ADS-B performance assessment report. The data investigation revealed ADS-B message suffered from different anomalies including drop out; missing payload; data jump; low confident data and altitude discrepancy. Among those studied, the most severe was drop out and 32.49% of messages suffered from this anomaly. Dropout is an incident where ADS-B failed to update within a specified rate. Considering the potential danger being imposed, an in-depth analysis was carried out to characterize message dropout. Three flight parameters were selected to investigate their effect on drop out. Statistical analysis was carried out and Friedman Statistical Test identified that altitude affected drop out more than any other flight parameters.


2013 ◽  
Vol 66 (5) ◽  
pp. 719-735 ◽  
Author(s):  
Peter Brooker

Civil and military unmanned aircraft systems (UAS) operations are currently subject to restrictions that put major limits on their use of airspace. There is considerable debate about how to develop the safe, secure and efficient integration of UAS into non-segregated airspace and aerodromes. This paper examines a necessary safety aspect. Airlines and their passengers would obviously ask, “Is it still safe with all these unmanned aircraft around?” The spotlight must be on Air Traffic Control Systems as High Reliability Organizations (HRO). That status comes from industry characteristics: focus on safety, effective use of technological improvements, learning from feedback from accidents/incidents, and an underpinning safety culture. The safety of ATC Systems has improved dramatically: accidents are now the product of rare and complex ‘messes’ of multiple failures. It is therefore a major challenge to preserve the HRO status by ensuring at least current safety performance. The analysis sketches feasible processes of policy decision-making and safety analyses. Key factors are policies on UAS equipage and airspace usage, implementation of a Traffic Alert and Collision Avoidance System (TCAS)-variant appropriate for UAS, use of an ‘Equivalent Level of Safety’ philosophy, small datalink latencies, proven HRO safety and learning cultures, and stress testing of system resilience by real-time simulations.


2020 ◽  
Vol 8 (2) ◽  
pp. 79-88
Author(s):  
Julie Diiulio ◽  
Laura G. Militello ◽  
Devorah E. Klein

There is increasing demand to operate unmanned aircraft systems (UAS) in congested terminal environments, such as busy commercial airports. With this demand comes challenges to pilots. To identify these challenges, we conducted critical decision method (CDM) interviews with pilots. CDM is a cognitive task analysis method aimed at uncovering tacit cognitive challenges. Eight pilots from the U.S. were interviewed including four UAS pilots and four commercial pilots. Interviews were analyzed using thematic analysis, resulting in the identification of four categories of cognitive challenges: (i) noticing anomalies, (ii) diagnosing automation behavior, (iii) understanding when and how to intervene, and (iv) coordinating with air traffic control. In this paper, we describe each challenge, highlight real-world examples from our interviews, and provide some recommendations for addressing the implications of integrating UAS in congested terminal airspace.


Author(s):  
Asma Tabassum ◽  
William Semke

An analysis of the performance of Automatic Dependent Surveillance-Broadcast (ADS-B) data received from the Grand Forks, North Dakota International Airport was carried in this study. The purpose was to understand the vulnerabilities of UAT ADS-B system and recognize the effects on present and future Air Traffic Control (ATC) operation. At present unmanned aircraft systems (UAS) and autonomous air traffic control (ATC) towers are being integrated into the aviation industry. As a fundamental component of future surveillance system, the anomalies and vulnerabilities of ADS-B system need to be identified to enable a fully utilized airspace with enhanced situational awareness. The anomaly detection of ADS-B messages was based on the Federal Aviation Administration’s (FAA) ADS-B performance assessment report. Data investigation revealed ADS-B message suffered from different anomalies including drop out; missing payload; data jump; low confident data and altitude discrepancy. Among all the anomalies detected message discontinuation or dropout was found to be most frequent. Considering the potential danger being imposed, an in-depth analysis was carried out to characterize message dropout. Three flight parameters were selected to investigate their effect on drop out. Statistical analysis identified that altitude affected drop out more than any other flight parameters.


Sign in / Sign up

Export Citation Format

Share Document