scholarly journals BUILD CRYPTOGRAPHIC SYSTEM FROM MULTI-BIOMETRICS USING MEERKAT ALGORITHM

2019 ◽  
Vol 45 (2) ◽  
pp. 1-8
Author(s):  
Duha Salman
Keyword(s):  
Author(s):  
Gove Effinger ◽  
Gary L. Mullen
Keyword(s):  

2020 ◽  
Vol 8 (5) ◽  
pp. 4133-4138

The study of encryption/decryption of information is known as cryptography. The need of protecting information from old years until now is the reason of appearing the process of hiding information from unauthorized people to access it. In this research paper, a cryptographic system is designed by using the DNA computing concepts and random permutation. The proposed system is a block symmetric cipher that uses one initial key in which will be used to generate permutations as many as needed, convert the initial key to DNA key, convert plaintext block to DNA bases. The remaining needed DNA keys are produced through the cipher/deciphering processing. Different operations applied: permute using permutation, modulo and XOR operations to perform the encryption/decryption process. Using the DNA based cryptography enhance the information security and produce highly efficient cipher systems.


Author(s):  
Prerna Agarwal Et. al.

A comprehensive and functional approach is built in cloud computing, which can be used by cloud users to exchange information. Cloud service providers (CSPs) can transfer through server services through powerful data centres to cloud users. Data is protected through authentication of cloud users and CSPs can have outsourced data file sharing security assurance. The continuing change in cloud users, especially unauthenticated users or third parties poses a critical problem in ensuring privacy in data sharing. The multifunctional exchange of information while protecting information and personal protection from unauthorized or other third-party users remains a daunting challenge


Author(s):  
A. Rama Krishna ◽  
A. S. N. Chakravarthy ◽  
A. S. C. S. Sastry

<p>It is general fact that even after enormous expansion of wireless communication there are still dead regions that hampers the effective communication. With exponential rise in the smart phones, a new layer of communication has evolved that could address the concerns of dead regions and capacity barriers. D2D is the evolving communication technology which focuses on short distance hops between the public devices to reach the destination. The major drawback of this technology is that most of the devices are public hence trustworthiness of the entire channel needs to be addressed in order to make it a viable solution. In this paper, we introduce a novel hybrid cryptographic approach that could address multiple eavesdroppers’ scenario. This approach incorporates both Huffman coding and Binary coding to enhance the crypto benefits for the information transmitted over D2D channel that consists of several public devices. The dual-crypto nature of the proposed algorithm offers higher efficiency, better security and improved key transmission.  Thus, the proposed hybrid cryptographic approach is robust in nature while easy and simple to operate. In addition, the proposed approach could recover the original information without any distortion from the encrypted data making the approach lossless in nature. Further simulation results prove that the proposed offers confidentiality to the transmitted to data while addressing the network capacity crunch.</p>


2020 ◽  
Vol 30 (15) ◽  
pp. 2050223
Author(s):  
Yuling Luo ◽  
Shunsheng Zhang ◽  
Junxiu Liu ◽  
Lvchen Cao

The security of chaotic cryptographic system can be theoretically evaluated by using conventional statistical tests and numerical simulations, such as the character frequency test, entropy test, avalanche test and SP 800-22 tests. However, when the cryptographic algorithm operates on a cryptosystem, the leakage information such as power dissipation, electromagnetic emission and time-consuming can be used by attackers to analyze the secret keys, namely the Side Channel Analysis (SCA) attack. In this paper, a cryptanalysis method is proposed for evaluating the security of a chaotic block cryptographic system from a hardware perspective by utilizing the Template Attacks (TAs). Firstly, a chaotic block cryptographic system is described briefly and implemented based on an Atmel XMEGA microcontroller. Then the TA using a multivariate Gaussian model is introduced. In order to reduce computational complexity and improve the efficiency of TA, the Hamming weight is used in this work to model power consumption traces. The proposed TA method has the following advantages including (a) using the sum of difference to select points of interest of traces, (b) using a data processing method to minimize the influences on power information modeling from the redundant sampling points, and (c) all the traces are aligned precisely before establishing the templates. Experimental results show that the TA can be used to attack the chaotic cryptographic systems and is more efficient, i.e. [Formula: see text]32% less attack traces than correlation power analysis, when the templates are properly built.


1997 ◽  
Vol 44 (5) ◽  
pp. 953-961 ◽  
Author(s):  
B. Slutsky ◽  
P. C. Sun ◽  
Y. Mazurenko ◽  
R. Rao ◽  
Y. Fainman

Sign in / Sign up

Export Citation Format

Share Document